Публикации

11 октября [Лекции]

Лекция №3

Мир в целом есть система, которая, в свою очередь, состоит из множества больших и малых систем.

В классической теории систем можно выделить три различных класса объектов: примитивные системы, структура которых неизменна (примером может служить математический маятник); аналитические системы, которые почти всегда имеют фиксированную структуру, но иногда претерпевают бифуркации – скачкообразные изменения структуры (простая экосистема); хаотические системы, постоянно меняющие свою структуру (например, атмосфера Земли).

Хаос это принципиально неустойчивая структурная система. В этом смысле хаос это синоним изменчивой, внутренне противоречивой, нестабильной развивающейся системы, которую нельзя отнести к аналитическим структурам. Установив общие принципы управления в любых системах, можно попытаться определить, как должна быть организована система, чтобы она работала наиболее эффективно.

Этот подход к исследованию проблем управления от общего к частному, от абстрактного к конкретному получил название организационного или системного. Такой подход обеспечивает возможность изучения большого количества альтернативных вариантов, анализа ограничений и последствий принимаемых решений.

«Система – это набор взаимодействующих элементов», сказал фон Берталанфи, один из основателей современной Общей Теории Систем (ОТС) подчёркивая, что система – это структура, у которой элементы каким-то образом действуют друг на друга (взаимодействуют). Достаточно ли данного определения, чтобы отличить систему от не системы? Очевидно, нет, потому что в любой структуре пассивно или активно её элементы, так или иначе, действуют друг на друга (давят, толкают, притягивают, индуцируют, нагревают, действуют на нервы, нервничают, обманывают, поглощают и пр.). Любой набор элементов всегда, так или иначе, действует и невозможно найти объект, который не совершал бы какие-либо действия. Однако эти действия могут быть случайными, без цели, хотя случайно, но не предсказуемо, они могут способствовать достижению какой-либо цели. Хотя признак действия и является основным, он определяет не понятие системы, а одно из необходимых условий этого понятия.

«Система – это обособленная часть, фрагмент мира, вселенной, обладающий особым качеством (эмерджентностью) относительной самодостаточностью (термодинамической изолированностью)», сказал П. Эткинс. Но любой объект является частью или фрагментом вселенной, и каждый объект отличается от остальных каким-то особым качеством (эмерджентностью – свойством, которым не обладает простая сумма всех частей данной системы), включая место его расположения, время существования и пр. И при этом каждый объект в определённой мере термодинамически независим, как и зависим от его окружения. Следовательно, данное определение также определяет не саму систему, а несколько следствий системности. Полноценного определения понятия «система», вероятно, нет потому, что недооценивалось понятие «цель». Любые свойства систем, в конечном итоге, связаны с понятием цели, потому что любая система отличается от других систем постоянством своих действий, а стремление сохранить это постоянство является отличительным качеством любой системы. Сегодня цель трактуется как один из элементов поведения и сознательной деятельности человека, который характеризует предвосхищение в осмыслении результата деятельности и пути его реализации с помощью определённых средств. Цель выступает как способ интеграции различных действий человека в некоторую последовательность или систему. Таким образом, цель трактуется как чисто человеческий фактор, присущий только человеку. Осталось приложить понятие «цели» не только к психологической деятельности человека, но и к самому понятию «система», потому что основным отличительным признаком любой системы является её предназначенность какой-либо цели. Любая система всегда предназначена для чего-то, целенаправленна и служит для какой-то определённой цели, и цель ставится не только перед человеком, но и перед каждой системой, вне зависимости от её сложности. Тем не менее, ни в одном определении системы практически нет понятия цели, хотя именно цель является системообразующим фактором, а не признаки действия, эмерджентности или чего-либо другого.

Нет систем без цели и для достижения этой цели группа элементов объединяется в систему и действует. Целенаправленность определяется вопросом: – «Что может делать данный объект». «Система – это комплекс избирательно вовлеченных элементов, взаимосодействующих достижению заданного полезного результата, который принимается основным системно образующим фактором». Содействовать можно только лишь достижению определённой цели, а заданный полезный результат может быть только целью. Остаётся лишь выяснить, кто или что определяет полезность результата. Другими словами, кто или что ставит цель перед системой?

Вся теория систем построена на фундаменте четырёх аксиом и четырёх законов, которые выводятся из аксиом:

аксиома №1 – у системы всегда есть одна постоянная генеральная цель (принцип целенаправленности, предназначенности систем);

аксиома №2 – цель для систем ставится извне (принцип задания цели для систем);

аксиома №3 – для достижения цели система должна действовать определённым образом (принцип выполнения действия системами) –

закон №1 сохранения (принцип постоянства действия систем для сохранения постоянства цели),

закон №2 причинно-следственных ограничений (принцип детерминизма действий систем),

закон №3 иерархии целей (принцип распределения цели на подцели),

закон №4 иерархии систем (принцип распределения подцелей между подсистемами и принцип подчиненности подсистем);

аксиома №4 – результат действия систем существует независимо от самих систем (принцип независимости результата действия).

Аксиома №1 – принцип целенаправленности. В первую очередь необходимо определить, что мы вкладываем в понятие «система», потому что, на первый взгляд, существуют как минимум две группы объектов – «системы» и «не системы».

В каком же случае объект является системой? Вероятно, не любой объект может быть системой, хотя как системы, так и не системы состоят из множества частей (компонентов, элементов и т.д.). Куча песка в ряде случаев – это структура, но не система, хотя и состоит из множества элементов, представляющих неоднородности плотностей в пространстве (песчинки в сочетании с пустотами). Но в других случаях эта же куча песка может быть системой. Чем же отличается структура – система от структуры – не системы, ведь та и другая состоят из элементов?

Все объекты можно разделить на две большие группы, если оказать на них определённое одно и то же внешнее воздействие: те, которые отличаются постоянством своих ответных действий и те, у которых ответное действие не постоянно и непредсказуемо. При этом если мы поменяем внешнее воздействие, то опять получим такие же две группы, но их состав поменяется: уже другие объекты будут отличаться постоянством своих действий на это новое воздействие, а те, которые прежде отличались таким постоянством на прежнее воздействие, уже не будут отличаться этим при новом воздействии. Назовём системами объекты, состоящие из набора элементов и отличающиеся постоянством своих действий в ответ на определённые внешние воздействия. А те, которые не отличаются постоянством своих действий на эти же воздействия, назовём случайными наборами элементов по отношению к этим воздействиям.

Отсюда, понятие «система» является относительным, в зависимости от того, как данная группа элементов реагирует на данное определённое внешнее воздействие. Постоянство и одинаковость реакции взаимодействующей группы элементов по отношению к определённому внешнему воздействию является критерием системности. Постоянство действий в ответ на определённое внешнее воздействие является целью данной системы. Следовательно, цель определяет направление действий системы.

Любые системы отличаются постоянством своих действий и отличаются друг от друга свой целенаправленностью (предназначенностью для чего-то конкретного). Нет системы «вообще», есть всегда конкретные системы для каких-то определённых целей. Любой объект нашего Мира отличается от другого только своей целью, предназначенностью для чего-то.

У разных систем разные цели и именно они определяют различие между системами. Отсюда же обратный вывод – если есть какая-либо система, значит, у неё есть цель. Мы не всегда понимаем цели у тех или иных систем, но они (цели) всегда есть у любых систем. Мы не можем сказать, для чего нужен, например, атом водорода, но не можем отрицать, что он нужен для создания полимерных органических цепочек, или, например, для образования молекулы воды. Во всяком случае, если нам нужно построить молекулу воды, то кроме атома кислорода мы обязаны взять два атома именно водорода, а не углерода или какого-либо другого элемента. Системой может быть только такая группа элементов, у которой результат их общего взаимодействия отличается от результатов действия каждого из этих элементов в отдельности. Он может отличаться как качественно, так и количественно. У кучи песка масса больше, чем масса отдельной песчинки (отличие количественное). У комнаты, стены которой построены из кирпичей, есть свойство ограничивать объём пространства, чего нет у отдельных кирпичей (отличие качественное). Любая система всегда предназначена для какой-либо цели, но всегда у неё эта цель одна и та же. Гемоглобин как система всегда предназначен только для переноса кислорода, автомобиль для перевозок, а соковыжималка для выжимания сока из фруктов. Железной соковыжималкой можно забить гвоздь, но это не есть цель соковыжималки как системы. Это постоянство цели обязывает любые системы действовать всегда для достижения одной и той же, им предназначенной цели.

Принцип задания цели. Автомобиль предназначен для перевозок, калькулятор – для вычислений, фонарь – для освещения и т.д. Но цель перевозки нужна не автомобилю, а кому-то или чему-то внешнему по отношению к нему. Автомобилю нужна только его способность выполнять эту цель, чтобы выполнить её. Целью является необходимость для чего-то внешнего в чём-то, а данная система только лишь выполняет это, обслуживая это внешнее. Следовательно, цель системе ставится извне, а от системы требуется только способность выполнять эту цель. Этим внешним является другая система или системы, потому что Мир заполнен только системами. Задание цели всегда исключает самостоятельный выбор цели системой.

Цель можно задать системе как приказ и как установку. Есть различие в этих понятиях. Приказ – это жёсткая директива, нужно выполнить только «ЭТО» с заданной точностью и только «ТАК», а не иначе. Т.е., системе не дано право выбора действий для достижения цели, все её действия строго определены. Установка – это более мягкое понятие, задаётся только «ЭТО» с заданной или приблизительной точностью, но право выбора действий даётся самой системе. Установку можно задавать системам только с достаточно развитым блоком управления, который уже может сам сделать выбор необходимых действий. Ни одна система не обладает свободой воли и не может поставить (задать) сама себе цель - она приходит в неё извне. Но может быть есть системы, которые самодостаточны и сами ставят перед собой цели? Например, мы сами, люди, как будто бы можем ставить перед собой цели и выполнять их. Значит, мы являемся примером независимых систем? Не всё так просто. Существует дуализм (двойственность) одного и того же понятия цели: цель как задание для какой-то системы, и цель как стремление (желание) этой системы выполнить эту заданную цель: Цель – это задание, как необходимость внешней управляющей системы (суперсистемы) в определённом заданном результате; Цель – это стремление (желание) получения определённого результата действия данной системой, всегда равного заданному (заданного приказа или установки). Принципиальный момент – одна суперсистема не может ставить цель системе (субсистеме) другой суперсистемы. Она может ставить цель только для этой суперсистемы, которая становится по отношению к ней субсистемой. Мы можем ставить цели перед собой, но всегда ставим цель лишь тогда, когда нам чего-то не хватает, когда мы страдаем. Страдание – это невыполненное желание. Любые физиологические (голод, жажда), эстетические и прочие невыполненные желания заставляют нас страдать, а страдание заставляет нас стремиться действовать до тех пор, пока желания не будут удовлетворены. Сила страдания всегда равна силе желания. Мы хотим есть и страдаем от голода, пока не удовлетворим это желание. Как только мы поедим, страдание сразу проходит. При этом появляется новое желание в соответствии с «пирамидой Маслоу». Желание – это наша цель-стремление. Когда мы выполняем наше желание, мы достигаем цели. Если мы достигаем цели, мы перестаём действовать, потому что цель достигнута и желание исчезает. Если у нас есть всё, что только можно придумать, то никаких целей мы сами не будем ставить перед собой, потому что нечего желать, всё есть. Следовательно, даже человек, при всей его сложности и развитости, не может быть абсолютно независимым от других систем (от внешней среды). Наши цели-задания нам всегда ставит внешняя среда и это пробуждает наше желание (цель-стремление), которое продиктовано недостаточностью чего-то. Мы вольны в выборе своих действий для достижения цели, но здесь мы ограничены уже нашими возможностями. Мы не ставим цели-задания, мы ставим цели-стремления. Тогда если не мы, то может быть есть другие системы, которые могут сами ставить себе цели независимо ни от чего? Может быть, начиная с какого-то определённого уровня усложнения системы уже сами могут это делать? Нам такие примеры неизвестны. Всегда на любую сколь угодно большую и сложную систему найдётся другая, более высшая, которая будет диктовать ей свои цели и условия. Природа едина и почти упорядочена. «Почти» потому, что на уровне квантовых явлений, вероятно, есть некая неопределённость и непредсказуемость, т.е., несоответствие явлений нашим знаниям физических законов (туннельные эффекты, например). Именно эта непредсказуемость является причиной случайности и непредсказуемости. А случайность и целенаправленность взаимно исключают друг друга.

Принцип выполнения действия. Любая система предназначена для какой-то вполне определённой и конкретной для неё цели и для этого она делает только специфические (целевые) действия. Следовательно, целью системы является стремление выполнения определённых целенаправленных действий для получения целевого (должного) результата действия.  Самолёт предназначен для воздушных перевозок, но не может плавать – для этого есть самолет-амфибия. Результат действия самолета – перемещение по воздуху. Этот результат действия является ожидаемым и прогнозируемым. Постоянство и прогнозируемость выполнения своих функций является отличительной особенностью любых систем – живых, природных, социальных, финансовых, технических и пр. Следовательно, для того, чтобы достичь своей цели, любой объект нашего Мира должен действовать, совершать какие-либо целенаправленные действия, акции (в данном случае целенаправленное, осознанное бездействие это тоже своего рода действие). Действие – это проявление какой-либо энергии, деятельности, а также сама сила, функционирование чего-либо; состояние, процесс, возникающие в ответ на какое-либо воздействие, раздражитель, впечатление (например, реакция в психологии, реакции химические, ядерные реакции). После действий объекта получается результат действия (не всегда ожидаемый, но всегда логичный и обусловленный). Целью любой системы является стремление получения должного (целевого) результата действия. При этом данный объект является донором результата действия. Результат действия системы-донора может быть направлен на какую-либо другую систему, которая в этом случае будет реципиентом (мишенью) для результата действия. При этом результат действия системы-донора становится внешним воздействием для системы-реципиента. Взаимодействие между системами осуществляется только через результаты действия. Таким образом строится цепочка действий: ... → (внешнее воздействие) → результат действия (внешнее воздействие) → ... На одиночное внешнее воздействие система даёт одиночный результат действия. Ни один объект не действует сам по себе. Он не может сам решить: - «Вот сейчас я начну действовать», потому что у него нет свободы воли, и он не может поставить перед собой цель и сам по себе выдать результат действия. Он может только реагировать (действовать) в ответ на определённое внешнее по отношению к нему воздействие. Любые действия любых объектов – это всегда их реакция на что-то. Есть воздействие – есть реакция. Нет воздействия – нет реакции. Иногда реакция может быть отсроченной, поэтому кажется беспричинной. Но если как следует поискать, всегда можно найти причину – внешнее воздействие.

Познание мира даётся нам только через реакции его элементов. Реакция (от re... - возврат и лат. actio - действие) – действие, состояние, процесс, возникающие в ответ на какое-либо воздействие, раздражитель, впечатление (например, реакция в психологии, реакции химические, ядерные реакции). Следовательно, действие системы в ответ на внешнее воздействие – это реакция системы. Когда система уже подействовала (прореагировала) и был получен необходимый результат действия, это значит, что она уже достигла цели («погасила» цель) и после этого у нее уже нет цели, к которой она должна стремиться. Реакция всегда вторична и появляется только и только после внешнего воздействия на элемент. Иногда реакция может появиться спустя длительное время после внешнего воздействия, если, например, данный элемент был специально «запрограммирован» на задержку. Но она обязательно появится, если только сила внешнего воздействия превысит порог чувствительности элемента на внешнее воздействие, и если элемент вообще способен реагировать на данное воздействие. Если элемент может реагировать на давление выше 1 атмосферы, то он обязательно даст реакцию, если давление превысит 1 атмосферу. Если давление меньше 1 атмосферы, то он не будет реагировать на низкое давление. Если же на него воздействует температура, влажность, или электрическая индукция, он также не будет реагировать, как бы мы его не «уговаривали», поскольку он способен реагировать только на давление выше 1 атмосферы. Если на него ничего не давит (нет давления выше 1 атмосферы), он никогда не даст никакой реакции. Так как результат действия системы появляется только после какого-то внешнего воздействия, он всегда является вторичным, потому что первичным является внешнее воздействие. Внешнее воздействие является причиной, а результат действия – следствием (функцией). Очевидно, что системы-доноры могут давать один или несколько результатов действия, а системы-реципиенты – реагировать на одно или несколько внешних воздействий. Но элементы-доноры могут взаимодействовать с системами-реципиентами только в случае качественно однородных действий. Если системы-реципиенты могут реагировать только на давление, то взаимодействовать с ними могут только те системы-доноры, результатом действия которых является именно давление, а не температура, электрический ток или что-либо другое. Взаимодействие между системами-донорами и системами-реципиентами возможно лишь в случае качественной однородности (гомореактивности) их взаимодействия (принцип однородной интерактивности). Мы можем слушать выступление музыканта на сцене, прежде всего потому, что у нас есть уши. Земляной червь не сможет понять нашего восторга от выступления музыканта хотя бы по той причине, что у него нет ушей, он не может воспринимать звук и у него нет вообще понятия о звуке, даже если (гипотетически) у него будет интеллект равный нашему. Результат действия элемента-реципиента может быть как однородным (гомореактивным), так и не однородным, не равным по качеству действия, (гетерореактивным) по отношению к нему внешнего воздействия. Например, элемент реагирует на давление, а его результатом действия может быть или давление, или температура, или частота, или поток чего-либо, или число обитателей леса (квартиры, города, страны) и т.д. Следовательно, реакция элемента на внешнее воздействие может быть как гомореактивной, так и гетерореактивной. В первом случае элементы являются передатчиками действия, во втором – преобразователями качества действия. Если результат действий системы полностью соответствует реализации цели, это говорит о достаточности данной системы (данной взаимодействующей группы элементов) для данной цели. В противном случае данная группа элементов не соответствует данной цели и либо является недостаточной, либо вообще не является системой для достижения уровня качества и количества заданной цели. Поэтому, любой существующий объект можно охарактеризовать, ответив на основной вопрос: – «Что может сделать данный объект?». Этот вопрос характеризует понятие «результат действия объекта», и который, в свою очередь, состоит из двух подвопросов: Какое действие может выполнить данный объект? (качество результата действия); Сколько такого действия может выполнить данный объект? (количество результата действия). Эти два подвопроса являются характеристикой стремления системы выполнить цель. А задание цели можно охарактеризовать, ответив на другой вопрос: – «Что должен сделать данный объект?», и который также состоит из двух подвопросов: какое действие может должен данный объект? (качество результата действия); сколько такого действия должен выполнить данный объект? (количество результата действия). Эти последние два подвопроса и определяют цель как задание (приказ, директиву) для данного объекта или группы объектов и под эту цель ищется или строится система, которая может это делать. Чем ближе соответствие между тем, что должен и что может делать данный объект, тем ближе данный объект к идеальной системе. Реальный результат действия системы должен соответствовать заданному (ожидаемому). Это соответствие является основной характеристикой любой системы.

Из очень ограниченного числа элементов можно построить очень большое разнообразие систем. Весь многообразный материальный физический мир построен из различных комбинаций протонов, электронов и нейтронов, и эти комбинации являются системами с определёнными целями. Мы не знаем вкуса протонов, нейтронов и электронов, но мы знаем вкус сахара, атомы молекул которого построены из этих элементов. Из этих же элементов построен и камень, и человек. Результатом действия маятника будет только раскачивание, а не секреция гормона, проведение импульса и т.д. Следовательно, его целью и его результатом действия является только раскачивание с постоянной частотой, и ничто иное. Симфонический оркестр может только играть музыкальные произведения, но не строить, воевать, торговать и т.д. Генератор случайных чисел должен генерировать только случайные числа. Если он вдруг будет генерировать серии взаимозависимых чисел, он перестаёт быть генератором случайных чисел. Реальные и идеальные системы отличаются друг от друга тем, что у первых всегда есть дополнительные свойства, определённые несовершенством реальных систем. Массивной золотой королевской печатью, например, можно колоть орехи с таким же успехом, как и с помощью молотка или обыкновенного камня, но она и предназначена для другой цели. Поэтому, как уже было отмечено выше, понятие «система» является относительным, но не абсолютным, в зависимости от соответствия между тем, что должен и что может сделать данный объект. Если объект может выполнить заданную цель, он является системой для выполнения этой цели. Если не может, он не система для данной цели, но может быть системой для другой цели. Для достижения цели не имеет значения, из чего состоит система, а важно – что она может. В любом случае возможность выполнить цель определяет систему. Следовательно, систему определяет не состав её элементов, а насколько точно она может выполнить то, что от неё ожидается (цель). Важен результат действия, а не способ его получения.

Из совершенно разных элементов можно построить системы для решения одинаковых задач (целей). Сумма в $200 в виде монет в $1 каждая и чек на эту же сумму могут выполнить одно и то же действие (сделать одну и ту же покупку), хотя и состоят из разных элементов. В одном случае это металлические диски с выгравированными знаками, в другом – кусок бумаги с нарисованным текстом. Следовательно, они являются системами под названием «деньги» с одинаковыми целями, при условии, что их используют для купли-продажи, без учёта, например, удобства их переноса или гарантии от воровства. Но чем больше оговаривается условий выполнения цели, тем меньше элементов подходят для выполнения такой цели. Если нам, например, нужно много денег, скажем, $1 000 000, причём наличными, и чтобы они не занимали много места, и ещё была бы гарантия, что они не фальшивые, то нам подойдут только банковские банкноты достоинством в $100, полученные только из банка. Чем больше уточняется цель, тем меньше выбор подходящих для неё элементов. Таким образом, система определяется соответствием между заданной целью и её результатом действия. Цель – это и задание для объекта (то, что он должен сделать), и его стремление или желание (то, к чему он стремится). Если данная группа элементов может реализовать эту цель, она является системой для достижения заданной цели. Если она не может реализовать эту цель, она не является системой для достижения данной цели, хотя она же может быть системой для достижения другой цели. Для достижения цели система действует. Фактически, своими действиями система преобразует цель в результат действия, затрачивая при этом энергию. Посмотрите вокруг и всё, что увидите – это чьи-то материализованные цели и осуществлённые желания.

По большому счёту всё, что заполняет наш Мир, является системами и только ими, и все они предназначены для самых разных целей. Но мы не всегда знаем целей многих из этих систем и поэтому не все объекты для нас являются системами. Реакции систем на одни и те же внешние воздействия всегда постоянны, потому что цель всегда определенная и постоянная. Поэтому и результат действия всегда должен быть определённый, т.е., одинаковый, и постоянный (принцип постоянства соответствия результата действий системы должному), а для этого и действия системы должны быть одни и те же (принцип постоянства соответствия актуальных действий системы должным). Если он не будет постоянным, он не сможет быть должным, равным заданному (принцип постоянства результата действия). Из принципа постоянства действия исходит закон сохранения. Постоянство реакции назовём целенаправленностью, потому что сохранение одинаковости (постоянства) своей реакции является целью системы. Следовательно, закон сохранения определяется целью. Сохраняться будет то, что соответствует достижению цели системы. А это и сами действия, и порядок действий, и элементы для выполнения этих действий, и энергия, затраченная на выполнение этих действий, потому что система будет стремиться сохранить свое движение к цели и её движение будет целенаправленным. Следовательно, цель определяет закон сохранения и закон причинно-следственных ограничений (см. ниже), а не наоборот. Закон сохранения это один из основных законов нашего мира, если не самый фундаментальный. Одним из частных следствий закона сохранения является то, что материя никогда не появляется из ничего, и она не исчезает в ничто (закон сохранения материи). Она всегда есть. Может быть её не было перед началом Мира, если было его начало, и не будет после его конца, если он будет, но в нашем Мире она не появляется и не исчезает. Материей являются вещество и энергия. Вещество (от слова вещь, объект) может существовать в различной комбинации его форм (жидкие, твердые газообразные и прочие, а также различные тела), включая живые формы. Но всегда вещество – это какие-либо объекты, от элементарных частиц до галактик, включая и живые объекты. Вещество состоит из элементов. Одни формы веществ могут переходить в другие (химические, ядерные и прочие структурные превращения) за счёт перегруппировки элементов путём изменения связей между ними. Физическим выражением закона сохранения является формула Эйнштейна. Само вещество может превращаться в энергию и наоборот.

Энергия (от греч. energeia — действие, деятельность) – общая количественная мера движения и взаимодействия всех видов материи. Энергия в природе не возникает из ничего и не исчезает; она только может переходить из одной формы в другую. Понятие энергии связывает воедино все явления природы. Взаимодействие между системами или между элементами системами, в сущности, является связью между ними. С позиций системности энергией является мера (количество) взаимодействия между элементами системы или между системами, которое нужно совершить при создании между ними связи. Материальной мерой энергии может быть, например, один ватт. Меры энергии в других системах, например, социальных, биологических, психических и прочих, не разработаны. Любые объекты являются системами, поэтому взаимодействия между ними являются взаимодействиями между системами. Но системы образуются за счёт взаимодействия между её элементами и образования межэлементных связей между ними. При взаимодействии между системами образуются уже межсистемные связи. Любое действие, включая взаимодействие, требует энергии. Поэтому, при образовании связи в неё «вкладывается» энергия. Следовательно, так как взаимодействие между элементами системы или разными системами является связью между ними, то связь является энергетическим понятием. Другими словами, при создании системы из элементов и при её перестройке из простой в сложную затрачивается энергия, которая расходуется на создание новых связей между элементами. А при разрушении системы связи между элементами разрушаются и выделяется энергия. Системы сохраняются за счёт энергии связей между её элементами. Это есть внутренняя энергия системы. При разрушении этих связей энергия высвобождается, но сама система как объект исчезает. Отсюда, внутренняя энергия системы – это энергия связей между элементами системы. При эндотермических реакциях на образование связей затрачивается энергия, которая приходит в систему извне. При экзотермических реакциях выделяется внутренняя энергия системы за счёт разрыва тех связей между её внутренними собственными элементами, которые уже существовали до момента реакции. Но когда связь уже образована, то в силу закона сохранения её энергия уже не меняется, если на систему не оказывается никакого воздействия. Например, при образовании связей между двумя ядрами дейтерия (2D2) образуется ядро 1Не4 и выделяется энергия (для простоты опущены подробности, например, протон-протонной реакции). И масса ядра 1Не4 становится чуть меньше суммы масс двух ядер дейтерия на величину, кратную выделенной энергии, в силу физического выражения закона сохранения. Следовательно, при слиянии ядер дейтерия часть их внутриядерных связей разрушается, потому и становится возможным слияние этих ядер. Энергия связи между элементами ядер дейтерия много больше энергии связи между двумя ядрами дейтерия. Поэтому при разрушении части связей между элементами ядер дейтерия выделяется энергия, часть которой затрачивается на термоядерный синтез – на образование связи между двумя ядрами дейтерия (внеядерной связи по отношению к ядрам дейтерия), а часть выделяется вне ядра гелия. Но наш Мир заполнен не только материей. Такими же реальными являются и другие объекты – социальные, духовные, культурные, биологические, медицинские и прочие. Их реальность проявляется в том, что они могут активно воздействовать как друг на друга, так и на другие виды материи (через деятельность других систем и человека). И они также существуют и действуют не хаотически, а подчиняются специфическим, но строгим законам своего существования. Их также касается закон сохранения, потому что они имеют свои виды «энергии», не появились вдруг, а могут лишь переходить друг в друга. Любую систему можно описывать качественными и количественными характеристиками. В отличие от материальных объектов поведение других объектов сегодня можно описать лишь качественно, потому что для них пока нет своей «термодинамики», например, «психодинамики». Мы не знаем, например, сколько «ватт» душевной энергии необходимо приложить для решения трудной психологической задачки, но мы знаем, для её решения требуется душевная энергия. Тем не менее эти объекты являются такими же полноценными системами, и они построены по тем же принципам, что и другие материальные системы.

Так как системы – это группы элементов, а изменения форм веществ – это есть изменение связей между элементами вещества, то изменения форм веществ это есть изменения форм систем. Следовательно, форма определяется спецификой связей между элементами систем. «Нет ничего вечного под луной», мир постоянно меняется, одни формы материи переходят в другие формы, но изменчивы лишь формы, сама материя неуничтожима и всегда сохраняется. При этом изменение форм также подчиняется закону сохранения и именно он определяет, как одни формы должны сменять другие формы материи. Формы меняются только за счёт изменения связей между элементами систем. А так как каждая связь между элементами системы имеет энергетический эквивалент, то любая система содержит внутреннюю энергию, которая является суммой энергий связей между всеми элементами. Форма (лат., филос.) – совокупность отношений, определяющих объект. Форма противополагается материи, содержанию объекта. У Аристотеля форма – это действующая сила, образующая вещи, имеет бытие вне вещей. По Канту, форма – это все, что субъект познания вносит от себя в содержание познаваемого. Пространство, время суть формы познавательной способности. Все категории мышления: количество, качество, отношение, субстанция, место, время и др., это формы, продукт способности к отвлечению, к образованию общих понятий нашего ума. Однако, это не совсем корректные определения. Форма не может быть противопоставлена материи, потому что она неразрывно связана с ней, она сама является формой материи. Форма не может быть также силой, хотя, вероятно имеет отношение к энергии, потому что определяется связями в системе, которые содержат энергию. Если следовать Канту, то форма является чисто субъективным понятием, так как соотносится только к интеллектуальным системам, к их познавательным способностям. А что, без их познания формы не существуют? Любая система имеет тот или иной вид формы. А форма системы определяется видом и характером связей между элементами системы. Следовательно, форма – это вид связей между элементами системы. А так как могут быть взаимодействия между системами, то при этом образуются новые связи между ними и возникают новые формы систем. Другими словами, при взаимодействии между системами образуются новые системы в виде новых форм. И при взаимодействии между системами всегда расходуется энергия. Логическим выражением закона сохранения является закон причинно-следственных ограничений, потому что ему соответствует логическая связка: «если..., то...».

Возможный выбор внешних воздействий (причин), на которые должна реагировать система, ограничен первой частью этой связки – «если...», а действия системы (следствия) ограничены второй частью – «то...». Поэтому закон называется законом причинно-следственных ограничений. Этот закон гласит: «На любое следствие есть своя причина». Ничего само собой без причины не появляется и просто так без последствий не исчезает. Без причины нет следствий, без воздействия нет реакции. В однозначности и определённости реакции систем на внешнее воздействие и заключается детерминизм в природе. Всегда на определённую причину есть определённое следствие. Система всегда должна реагировать только на определённые внешние воздействия и всегда давать только определённую реакцию на них. Хеморецептор на О2 всегда будет реагировать только на О2, но не Na+, Ca++ или глюкозу. При этом он выдаст определённый потенциал действия, а не порцию гормона, механическое сокращение или что-нибудь другое. Любая система отличается специфичностью на внешнее воздействие и специфичностью своей реакции. Определённость внешних воздействий и реакций на них накладывает ограничения на их виды. Поэтому из закона причинно-следственных ограничений исходит необходимость:  выполнения какого-либо специфичного (определённого) действия для достижения специфичной (определённой) цели; существования какой-либо специфичной (определённой) системы (подсистемы) для выполнения такого действия, потому что никакое действие само собой не происходит; очередности действий: система всегда начинает действовать и производит свой результат действия только лишь после оказания на неё внешнего воздействия, потому что у неё нет свободы воли для принятия решения о выполнении действия. Следовательно, всегда результат действия системы может появиться только лишь после определённых действий системы. А эти действия могут быть только лишь после внешнего воздействия. Внешнее воздействие первично, а результат действия – вторичный. Из всех возможных действий будут выполнены только те, которые вызваны внешним воздействием и ограничены (определены) возможностями реагирующей системы. Если после прежнего внешнего воздействия цель уже достигнута и нет нового внешнего воздействия, то после выдачи результата действия система должна быть в полном покое и не действовать, потому что только цель обязывает систему действовать, а она уже достигнута. Нет цели, нет действий. Если появится новое внешнее воздействие, то появится и новая цель, и лишь тогда система снова начнёт действовать и появится новый результат действия.

Основные характеристики систем. Чтобы выполнять целенаправленные действия система должна иметь соответствующие элементы. Это является следствием закона сохранения и причинно-следственных ограничений, потому что ничего само собой не происходит. Поэтому любые системы являются многокомпонентными объектами и их состав не случаен. Именно состав систем во многом определяет их возможности выполнения определённых действий. Например, система составленная из кирпичей может быть домом, но не может быть компьютером. Но не только состав определяет возможности систем. Необходимо ещё также и строго определённое взаимодействие между ними, которое определяется их взаимоотношением. Двумя руками можно сделать то, что невозможно сделать одной или одиночными руками, если можно так выразиться. Рука обезьяны содержит те же пять пальцев, что и рука человека. Но рука человека вместе с его мозгом преобразовала мир на Земле. Таким образом, два существенных признака определяют качество и количество результатов действия любых систем – состав элементов и их взаимоотношения. Любой объект имеет только две основные характеристики: что и сколько он может сделать. Новое качество может быть только у группы определённым образом взаимодействующих элементов. Определённый – значит целевой. Определённым образом взаимодействующих – это значит имеющих определённую цель, построенных определённым образом и действующих определённым образом для достижения данной цели. Его не может быть у отдельно взятых элементов, и у случайно взаимодействующих элементов. В результате определённого взаимодействия элементов часть их свойств нейтрализуется, а другая часть используется для достижения цели. Превращение одних форм материи в другие происходит именно за счёт нейтрализации каких-то свойств этих форм материи. А нейтрализация происходит за счёт изменения каких-либо связей между элементами объекта, потому что эти связи определяют форму объекта. Поэтому «нейтрализуется», но не «уничтожается», потому что ничто в этом мире не исчезает и не появляется (закон сохранения). Весь мир состоит из протонов, нейтронов и электронов, но мы видим различные объекты, которые различаются по цвету, консистенции, вкусу, форме, молекулярному и атомарному содержанию и т.д. Это значит, что при определённом взаимодействии протонов, нейтронов и электронов появляются определённые межэлементарные связи. При этом одни из их свойств нейтрализуются, а другие сохраняются или даже усиливаются таким образом, что возникает всё многообразие нашего мира.  Целью любой системы является выполнение заданного (определённого) условия, достижение заданного результата действия (цели). Если заданный результат действия получился случайно, то в следующий момент он уже может не выполняться и заданный результат исчезнет. Но если для чего-то необходимо, чтобы результат действия всегда (постоянно) был именно такой, а не какой-либо иной (задание цели), необходимо, чтобы группа взаимодействующих элементов постоянно сохраняла этот новый результат действия. Для этого данная группа элементов должна постоянно стремиться сохранять заданное условие (выполнение цели).

Простая системная функциональная единица (СФЕ). Пожалуйста, запомните этот термин! Система может состоять из любого количества исполнительных элементов, при условии, что каждый из них может участвовать (содействовать) достижению цели и их достаточно для реализации этой цели. Минимальной системой является такая группа из «k» элементов, которая при удалении из её состава хотя бы одного любого элемента, теряет качество, присущее данной группе элементов, но отсутствующее у любого из данных «k» элементов. Такая группа элементов является простой системной функциональной единицей (простая СФЕ, не составная), минимальной простейшей системой, которая имеет какой-либо признак (способность совершать действие), которого нет у любого её элемента в отдельности. Любая СФЕ реагирует на внешнее воздействие по закону «всё, или ничего». Этот закон следует из определения простой СФЕ (удаление любого её элемента прекращает её функцию как системы) и из дискретности её состава. Любой из её элементов может либо быть, либо не быть в составе простой СФЕ. А поскольку простая СФЕ по определению состоит из конечного и минимального набора исполнительных элементов и все они должны быть в составе СФЕ и функционировать (действовать), то прекращение функции любого из них прекращает функцию всей СФЕ как системы. Независимо от силы внешнего воздействия, но при условии его превышения определённого порога, её результат действия будет максимальным («всё»). Если нет внешнего воздействия, то СФЕ никак не проявляет себя (не реагирует, «ничего»). Простые СФЕ, несмотря на своё название, могут быть сколь угодно сложными – от простейших минимальных СФЕ до максимально сложных. Молекула любого вещества состоит из нескольких атомов. Удаление любого атома превращает эту молекулу из одного вещества в другое. И даже каждый атом является очень сложным образованием. Удаление любого его элемента превращает его в ион, другой атом или другой изотоп. Солдат является простой СФЕ системы под названием «армия». Солдат – это тело человека плюс полное снаряжение  солдата. Тело человека – чрезвычайно сложный объект, но удаление любой его части делает из солдата инвалида. Да и солдатское снаряжение также многокомпонентно. Но снаряжение не может стрелять без человека, а человек не может стрелять без снаряжения. Только вместе они могут выполнять функции, присущие СФЕ под названием «солдат». Несмотря на внутреннюю сложность, которая может быть сколь угодно большой, простая СФЕ является отдельным элементом, который выглядит как целое с определённым единичным свойством (качеством) – совершать одно элементарное по отношению ко всей системе определённое действие – захватывать шар, молекулу, толкать порцию крови, развивать усилие в 0.03 грамма, обеспечивать условия проживания животному (например, одна удельная единица площади леса) или человеку (квартира), делать один выстрел и т.д. Любая СФЕ будучи разделена на части уже перестаёт быть СФЕ для заданной цели. Только во взаимодействии частей группа элементов может проявить себя как СФЕ. Когда ломается какая-нибудь вещь, хороший хозяин всегда сначала раздумывает, где в хозяйстве ещё можно применить обломки и лишь после этого выбрасывает их, потому что поломанную вещь (одна СФЕ) можно превратить в другую, более простую (другая СФЕ). Гемоглобин является элементом системы кровообращения и служит для захвата и последующей отдачи кислорода. Следовательно, молекулы гемоглобина являются СФЕ эритроцитов. Лиганды молекулы гемоглобина являются СФЕ гемоглобина, поскольку каждая из них может служить ловушкой для молекул кислорода. Но дальнейшее деление лиганды уже прекращает функцию удержания молекул кислорода. И т.д. Аналогами СФЕ в неживом мире являются, например, все материальные частицы, обладающие способностью при делении терять свои свойства – элементарные частицы, атомы, молекулы и т.д. Вирусы, возможно, могут быть системными функциональными единицами наследственности (ФЕН). Так, вероятно, сначала образовались полимерные молекулы типа ДНК в глинистых слоях или даже в межпланетной пыли или на кометах, по типу автокаталитической реакции Бутлерова – синтеза различных сахаров, в том числе и рибозы, из формальдегида в присутствии ионов Ca и Mg, а рибоза является основой для создания РНК и ДНК, и только затем уже появились клеточные структуры. Эти примеры различных конкретных СФЕ показывают, что СФЕ не является чем то неделимым, поскольку любая из них многокомпонентна и потому может быть разделена на части. Только внутриатомные элементарные частицы претендуют на роль истинных СФЕ, лежащих в основе всей материи нашего Мира, потому что пока не удаётся разделить их на части. Потому они и называются элементарными. Возможно они также очень сложно устроены, но не из элементов физического мира, а чего-либо другого, и они являются результатом действия систем не физического мира, вернее, не нашего Мира форм. На это указывает существование парных виртуальных частиц, например, позитрона и электрона, появляющихся как бы из пустоты, из вакуума и туда же исчезающих. Мы не можем резать бумагу ножницами, сделанными из той же бумаги. Вероятно, мы не можем также «разрезать» и элементарные частицы «ножницами», сделанными из этой же материи.

Простейший блок управления (прямая положительная связь - ППС). Чтобы любая СФЕ могла действовать, она должна содержать определённые элементы для осуществления своих действий согласно закону сохранения и причинно-следственных ограничений. Для выполнения целевых действий система должна содержать элементы исполнения, а для того, чтобы взаимодействие элементов исполнения было целевым, система должна содержать элементы (блок) управления. Элементы исполнения (эффекторы) выполняют само определённое (целевое) действие системы, чтобы получался заданный результат действия. Сам собой результат действия не получится. Для его получения необходимо действие определённых объектов. Такими элементами на примере плоскостей с пробным шаром являются сами плоскости. Но он (элемент исполнения) существует сам по себе и производит собственные результаты действия в ответ на внешние по отношению к нему определённые воздействия. Если на него что-то подействует, он прореагирует, не подействует – не прореагирует. Взаимодействие с другими элементами его касается постольку, поскольку результаты действия других элементов являются внешним воздействием для него самого и могут вызвать его реакцию в ответ на эти воздействия. Эта реакция проявится уже в виде его собственного результата действия, который также будет внешним воздействием для других элементов системы, но не больше. Ни один результат действия любого элемента системы не может быть результатом действия самой системы по определению. Выполнилось ли заданное условие (цель системы) случайно или не случайно, получился ли у данной группы элементов качественно новый заданный результат действия, или что-то помешало этому, для любого отдельно взятого элемента исполнения это совершенно безразлично. На «самочувствии» элементов исполнения, т.е., на их собственных функциях это никак не отражается и никакое их внутреннее свойство не заставит их следить за выполнением генеральной цели системы. Они просто не «умеют» этого делать. Элементы управления (блок управления) необходимы для того, чтобы получался именно заданный, а не какой-либо иной результат действия. Так как целью является реакция в ответ на специфическое внешнее воздействие, то сначала нужно почувствовать его, выделить его из множества других неспецифических внешних воздействий, принять решение о каких-либо специфических действиях и начать действовать. Если, например, СФЕ реагирует на давление, то она должна уметь «чувствовать» (рецепция) именно давление, а не температуру или что-либо другое. Для этого у неё должен быть специальный орган (рецептор), который умеет это делать. А для того, чтобы реагировать только на специфическое внешнее воздействие, которое может иметь отношение к выполнению её цели, СФЕ должна не только иметь рецепцию, но и выделить его из всех остальных внешних воздействий, которые действуют на неё (селекция). Для этого у неё должен быть специальный орган (селектор, или анализатор), который умеет выделять нужный сигнал из массы других. Далее, почувствовав и выделив внешнее воздействие, она должна принять решение о том, что нужно действовать (принятие решения). Для этого у неё должен быть специальный орган для принятия решений, который может принимать решения. Затем она должна реализовать это решение, т.е., заставить элементы исполнения действовать (реализация решения). Для этого у неё должны быть элементы (стимуляторы), с помощью которых можно передать решение на элементы исполнения. Следовательно, чтобы прореагировать на определённое внешнее воздействие и получить необходимый результат действия необходимо выполнить следующую цепочку управляющих действий: рецепция → селекция → принятие решения → реализация решения (стимуляция). Какие элементы должны выполнять эту цепочку действий управления? Элементы исполнения (например, плоскости) этого делать не могут, потому что выполняют само действие, например, захвата, но не действия управления. Поэтому они и называются элементами исполнения. Все действия управления должны выполнять элементы управления (блок управления) и они должны входить в состав СФЕ. Блок управления состоит из: рецептора Х (выделяет специфичный сигнал и определяет наличие внешнего воздействия); афферентных путей (передают информацию с рецептора в анализатор); анализатора-информатора (на основе информации с рецептора «Х» вырабатывает решения об активации исполнительных элементов); эфферентных путей (стимулятора) (реализация решения, передают управляющие воздействия на эффекторы).

Рецептор «Х», афферентные пути, анализатор-информатор (побудитель к действию) и эфферентные пути (стимулятор) вместе составляют блок управления. Рецептор и афферентные пути является прямой положительной связью (ППС). Прямой потому, что внутри СФЕ сигнал управления (информации о наличии внешнего воздействия) идёт в том же направлении, что и само внешнее воздействие. Положительной потому, что если есть сигнал, есть реакция, нет сигнала, нет реакции. Таким образом, блок управления СФЕ реагирует на внешнее воздействие. Он может почувствовать и выделить специфический сигнал внешнего воздействия из множества других внешних воздействий и, в зависимости от наличия или отсутствия специфичного сигнала решить, делать собственное действие или нет. А его собственным действием является побуждение (стимуляция) элементов исполнения действовать. Есть неуправляемые и управляемые СФЕ. Блок управления неуправляемых СФЕ решает действовать или нет только в зависимости от наличия внешнего воздействия. Блок управления управляемых СФЕ также решает действовать или нет в зависимости от наличия внешнего сигнала, но при наличии дополнительного условия – разрешения на это действие, которое подаётся на его вход приказа. У неуправляемой СФЕ есть один вход для внешнего воздействия и один выход для результата действия. Логика работы такой СФЕ чрезвычайно простая – если есть определённое внешнее воздействие, то она действует (есть результат действия), если нет внешнего воздействия, то нет результата действия. Для неуправляемых СФЕ регулятором действия является само внешнее воздействие. У неё есть собственное управление, осуществляемое внутренним блоком управления. Но у такой СФЕ невозможно внешнее управление. Она сама «решает», действовать ей, или нет. Поэтому она называется неуправляемой. Это решение зависит только от наличия внешнего воздействия. Если есть внешнее воздействие, то она действует и никакое внешнее решение (не воздействие) не может изменить внутреннего решения данной СФЕ. Неуправляемая СФЕ независима от внешних решений. Если она «решила», то выполнит свое действие. Примером неуправляемой СФЕ является, например, молекула нитроглицерина (СФЕ для микровзрыва). Если её тряхнуть (внешним воздействие является тряска), то она начнёт распадаться, выделяя энергию, и во время этого процесса ничто не остановит её от распада. Аналогом неуправляемых СФЕ в живом организме являются саркомеры, лиганды гемоглобина и т.д. Если саркомер начал сокращаться, он не остановится, пока не закончит сокращение. Если лиганда гемоглобина начала захватывать кислород, она не остановится, пока не закончит захват. В отличие от неуправляемых, у управляемых СФЕ есть два входа (один для входа внешнего воздействия и один – для ввода приказа в анализатор) и один выход для результата действия. Логика работы управляемой СФЕ несколько отличается от логики работы неуправляемой СФЕ. Такая СФЕ будет давать результат действия не только в зависимости от наличия внешнего воздействия, но и от наличия разрешения на входе приказа. Если есть определённое внешнее воздействие и есть разрешение на входе приказа, то действие начнёт выполняться. Если есть внешнее воздействие и нет разрешения на входе приказа, тот не должно быть действия. Для управляемых СФЕ регулятором действия является разрешение на входе приказа. Потому такие СФЕ называются управляемыми. Аналогом управляемой СФЕ в живом организме являются, например, лёгочные функциональнальные единицы вентиляции (ФЕВ) или перфузии (ФЕП-МКК, малого круга кровообращения), тканевые функциональнальные единицы перфузии (ФЕП-БКК, большого круга кровообращения), функциональные единицы секреции (клетки желёз различной секреции, ФЕС), нефроны почек, ацинусы печени и т.д. Элементы блока управления построены (собраны) из других обычных элементов, подходящих по своим характеристикам. Он может быть построен как из самих исполнительных элементов, соединённых определённым образом и по совместительству выполняющих функции исполнения и управления, так и из других не принадлежащих к данной группе исполнительных элементов и выделенных в отдельную цепь управления. В последнем случае они могут быть точно такими же, как и исполнительные элементы, но также могут быть сделаны и из других элементов. Например, мышечные сократительные функциональные единицы состоят из мышечных клеток, но управляются нервными центрами, состоящими из нервных клеток. В то же время все виды клеток, как нервных, так и мышечных, построены почти из одинаковых строительных материалов – белков, жиров, углеводов и минералов. Отличие управляемой СФЕ от неуправляемой только в наличии входа приказа. Отсюда же и изменение алгоритма её работы. Действия управляемой СФЕ зависят не только от внешнего воздействия, но и от запрета М на входе приказа. Блок управления является простейшим, если он содержит только ППС (рецептор «Х» и афферентные пути), анализатор-информатор и стимулятор. СФЕ являются первичными ячейками, исполнительными элементами любых систем. Как видим, несмотря на свою примитивность, они представляют собой довольно сложный и многокомпонентный объект. Каждая из них содержит не менее двух типов элементов (управления и исполнения), и каждый тип включает в себя ещё и ещё, но эти элементы являются обязательными атрибутами любой СФЕ. Сложность СФЕ является сложностью иерархии их элементов. Особой разницы между элементами исполнения и элементами управления нет. В конечном итоге всё в этом мире состоит из электронов, протонов и нейтронов. Разница между ними только в их месте в иерархии систем, т.е., в их взаимном расположении. Составная СФЕ содержит 4 простых СФЕ. Если нет никакого внешнего воздействия, все простые СФЕ неактивны, нет никакого результата действия. Если есть внешнее воздействие «Х», но приказ вносит «нет» (запрет на действие), все СФЕ также неактивны и также нет результата действия. Если есть внешнее воздействие и приказ вносит «да» (разрешение на действие), то все СФЕ активны и есть результат действия. «Мощность» данной составной СФЕ в 4 раза больше «мощности» простой СФЕ. Активация СФЕ производится через вводы приказа их блоков управления. У каждой простой СФЕ есть собственная ППС и общая для них всех ППС. Из неуправляемых и управляемых СФЕ можно строить другие СФЕ (составные), более мощные, чем одиночная СФЕ. В реальном мире мало простых СФЕ, которые дают минимальный неделимый результат действия. Гораздо больше составных СФЕ. Например, патрон, наполненный крупинками пороха является составной СФЕ (СФЕ для выстрела), но его энергия взрыва намного больше энергии одиночной крупинки пороха. Блок-схема составной СФЕ очень похожа на блок-схему простой СФЕ. Отличие составной СФЕ от простой только количественное. Простая СФЕ содержит только одну СФЕ – саму себя, а составная содержит несколько СФЕ, поэтому есть возможность усиления результата действия. Таким образом, простая и составная СФЕ содержат два типа элементов: элементы исполнения (эффекторы, которые выполняют специфические действия для достижения заданной генеральной цели системы) и элементы (блок) управления (ППС, анализатор-информатор и стимулятор, который активирует СФЕ). У составной СФЕ такой же блок управления, как и отдельной СФЕ, т.е., простейший, с прямой положительной (управляющей) связью (ППС). Составные СФЕ также работают по принципу «всё или ничего». Т.е., они либо дают максимальный результат действия в ответ на внешнее воздействие, либо ждут это внешнее воздействие и не делают никаких действий. Отличие составных СФЕ от простых СФЕ только в силе или амплитуде реакции, которая пропорциональна числу простых СФЕ.

Если костяшки домино стоят в последовательном ряду, то их результатом действия будет долгий звук от падения костяшек, длительность которого равна сумме числа падений каждой костяшки (увеличение длительности результата действия). Если костяшки стоят в параллельном ряду, то их результатом действия будет короткий, но громкий звук, равный сумме громкостей от падения каждой костяшки в отдельности (увеличение мощности). Цикл работы идеальной простой и составной СФЕ складывается из микроциклов: восприятие и селекция внешнего воздействия рецептором «X» и принятие решения; воздействие на исполнительные элементы (СФЕ); срабатывание исполнительных элементов (СФЕ); прекращение функции. После начала внешнего воздействия срабатывает рецептор «X» (1-й микроцикл). Затем уходит какое-то время на принятие решения, потому что это решение само является результатом действия определённых СФЕ, входящих в состав блока управления (2-й микроцикл). Затем активируются (включаются) все СФЕ (3-й микроцикл). Время срабатывания СФЕ зависит от скорости утилизации энергии, затраченной на действие СФЕ, например, от скорости сокращения саркомера в мышечной клетке и которое определяется скоростью биохимических реакций в мышечной клетке. После этого все СФЕ прекращают свою функцию (4-й микроцикл). При этом СФЕ полностью затрачивает на своё действие всю ту энергию, которую она имела и могла использовать на это действие. А так как очередность действий и результат действия всегда один и тот же, то и эта мера энергии всегда одна и та же (квант энергии). Чтобы СФЕ снова могла совершить новое действие, её нужно снова «зарядить» энергией. На это также может уходить время (время зарядки энергией). Как это происходит, рассмотрено в разделе, посвященном пассивным и активным системам, см. ниже). У любой СФЕ цикл её деятельности складывается из этих микроциклов. Поэтому, её время цикла работы всегда одинаковое и равно сумме этих микроциклов. Если СФЕ начала свои действия, она не остановится, пока не завершит свой полный цикл. В этом причина неуправляемости любых СФЕ в процессе их срабатывания (абсолютная рефрактерность) – внешнее воздействие может быстро закончиться и снова начаться, но пока СФЕ не закончит свои действия, она не остановится и не будет реагировать на новое внешнее воздействие. В реальных составных СФЕ к этим микроциклам могут добавляться дополнительные микроциклы, обусловленные несовершенством реальных объектов, например, несинхронностью срабатывания элементов исполнения из-за их неодинаковости. Отсюда видно, что даже простейшие системы, каковыми являются СФЕ, срабатывают не сразу, а им требуется какое-то время, пока появится их результат действия. Этим объясняется инерционность систем, которую можно измерить, используя параметр постоянной времени. Но это, вообще говоря, не инерционность, а транзиторная (проходящая) инертность объекта (рефрактерность), его неспособность отвечать на внешнее воздействие в определённые фазы своего действия. Истинная инерционность объясняется независимостью результата действия от системы, его произведшей (см. ниже). Постоянная времени – это время между началом внешнего воздействия и готовностью к новому внешнему воздействию после выработки результата действия. Аналогом составных СФЕ являются все объекты, которые действуют подобно лавине. В таких случаях работает «принцип домино». Было одно воздействие и всё падает. Но число падений равно числу СФЕ. Если толкнуть одну костяшку домино, от падения будет только один щелчок. Если толкнуть ряд стоящих костяшек домино, будет столько щелчков, сколько костяшек домино стояло в ряду. Биологическим аналогом составных СФЕ являются, например, функциональные единицы вентиляции (ФЕВ), каждая из которых состоит из большой группы в нескольких сот альвеол, одновременно включающихся в процесс вентиляции или отключающихся от неё. Ацинусы в печени, сосудистые сегменты брыжейки, лёгочные сосудистые функциональные единицы и пр. являются аналогами составных СФЕ. Таким образом, простая СФЕ является объектом, который может реагировать на определённое внешнее воздействие, а результат её действия всегда максимальный, потому что блок управления не контролирует его, т.е., она работает по закону «всё или ничего». Тип её реакции обусловлен типом СФЕ. Есть два вида простой СФЕ – неуправляемая и управляемая. Обе они срабатывают от специфического внешнего воздействия. Но для срабатывания управляемой СФЕ дополнительно необходим ещё сигнал внешнего разрешения на входе приказа, а у неуправляемой СФЕ входа приказа нет. Поэтому неуправляемая СФЕ не зависит ни от каких внешних управляющих сигналов. Блок управления управляемой и неуправляемой СФЕ состоит из анализатора-информатора и имеет только ППС (информатор «Х» и афферентные пути).

Составная Системная Функциональная Единица является таким же объектом, как и простая СФЕ, но результат её действия усиленный. Она также работает по закону «всё или ничего» и её реакция обусловлена типом и числом её СФЕ. Вероятно, и составные СФЕ могут быть управляемыми и неуправляемыми, и различие между ними только в наличии входа приказа в общий блок управления, через который в него подаётся разрешение на выполнение действия. Блок управления системы тоже простейший, имеет только ППС и анализатор-информатор. Следовательно, любые СФЕ функционируют по закону «всё или ничего». СФЕ так устроена, что она либо ничего не делает, либо выдаёт максимум результата действия. Её элементарный результат действия – либо он есть, либо его нет. Может быть СФЕ, которая выдаёт результат действия, например, в два раза больший, чем результат действия другой СФЕ. Но он всегда будет в два раза больший. Каждый результат действия простой СФЕ является квантом действия (неделимой порцией), причём максимальным для данной СФЕ. Неделимым потому, что СФЕ не может выдать часть своего результата действия, например, половину. А раз «неделимой порцией», то не может быть градации. СФЕ может быть, например, открыта или закрыта, давать электрический ток, или не давать, секретировать что-либо или не секретировать, и т.д. Но она не может регулировать количество результата действия, поскольку её результат всегда либо отсутствует, либо максимальный. Такой режим работы очень грубый, не точный и не выгодный как для самой СФЕ, так и для её цели. Представим себе, что в нашем автомобиле вместо руля будет устройство, которое будет сразу максимально сворачивать вправо, если мы повернём руль направо, или максимально влево, если мы повернём налево. Вместо плавной и точной подстройки под заданный курс движения автомобиль будет резко метаться справа налево и наоборот. И цель не будет достигнута, и автомобиль будет разрушен. В принципе составная Системная Функциональная Единица могла бы дать градуированный результат действия, потому что у неё есть несколько СФЕ, которые она могла бы включать в разной последовательности. Но такая система не может сделать этого, потому что не «видит» свой результат действия и не может его сравнить с тем, что должно быть.  

Количество результата действия. Для достижения заданной цели только задания качества результата действия недостаточно. Цель задаёт не только «какое действие должен» сделать объект (качество результата действия), но и «сколько этого действия» должен сделать данный объект (количество результата действия). А система должна стремиться выполнить специфическое действие ровно столько, сколько нужно, ни больше и ни меньше. Качество действия определяется типом СФЕ. Количество определяется количеством СФЕ. Есть три количественные характеристики результата действия – максимум, минимум и оптимум количества действия. В реальном мире от реальных систем требуется градация их результатов действия. Поэтому в работе системы должен быть не максимум и не минимум, а оптимум. Оптимум, это функционирование по принципу – необходимо и достаточно. Результат действия необходимо должен быть таким, а не другим по качеству, и достаточным по количеству, ни больше и не меньше. Отсюда, СФЕ не могут быть полноценными системами. Необходимы системы, у которых возможна регулируемая градация результата действия. Например, требуется, чтобы в тканевых капиллярах было давление 10 мм Hg. Этой фразой сразу задаётся всё, что содержится в понятии «необходимо и достаточно». Необходимо... давление, и достаточно... 10 мм Hg. Можно подобрать СФЕ, которая даёт давление, но не 10 мм Hg., а, например, 100 мм Hg. Это слишком много. Вероятно, можно подобрать СФЕ, которая может давать давление 10 мм Hg и в данный момент этого достаточно. Но если ситуация вдруг изменилась и уже требуется 100 мм Hg, а не 10 мм Hg, тогда что делать? Снова «бегать» и искать СФЕ, которая может давать 100 мм Hg? А нельзя ли сделать такую систему, которая могла бы давать любые давления в диапазоне, например, от 0 до 100 мм Hg, в зависимости от ситуации? Чтобы давать то количество результата действия, которое необходимо в данный момент, необходима градация результатов действия систем. Это можно было бы достичь путём построения систем из набора однотипных СФЕ по типу блок-схемы составной СФЕ. У неё есть то, что необходимо для градуировки результата действия – она содержит много СФЕ. Если сделать так, чтобы можно было включать в действие от одной до всех СФЕ, в зависимости от потребности, то результат действия будет иметь столько градаций, сколько СФЕ есть в системе. Чем больше точности требуется, тем больше мелких градаций результата действия должно быть. Поэтому, вместо одной СФЕ с её предельно большим результатом действия нужно использовать столько СФЕ с маленькими результатами действия, сумма которых равна требуемому максимуму, а точность выполнения цели равна результату действия одной СФЕ. Но у составной СФЕ нет возможности регулировать свой результат действия, потому что у неё нет органа, который делал бы это. Для того чтобы выдать результат действия в точности равный заданному, его (результат действия) нужно постоянно измерять и сравнивать данные измерений с заданием (с приказом, с «базой данных»). «База данных» – это список тех должных величин результата действия, которые система должна выдать в зависимости от величины внешнего воздействия и алгоритма работы блока управления. Цель системы – каждому значению измеренного внешнего воздействия должна соответствовать строго определённая величина результата действия (должная величина). Для этого нужно «видеть» (измерять) результат действия системы, чтобы сравнивать его с должным. А для этого у блока управления должен быть рецептор «У», который может измерять результат действия, должна быть линия связи (реципрокные пути), по которым информация с рецептора «У» идёт в анализатор-информатор, где результат этого измерения должен сравниваться с тем, что должно быть (с «базой данных»). Блок управления системы должен сравнивать внешнее воздействие с должной величиной, а должную величину с собственным результатом действия, чтобы увидеть его соответствие или несоответствие должной величине. Сравнить внешнее воздействие с должной величиной составная СФЕ ещё может, потому что у неё есть ППС. А сравнить должную величину с результатом собственного действия составная СФЕ уже не может, потому что у неё нет ничего, что может это сделать  (нет соответствующих элементов).

Простой блок управления (отрицательная обратная связь - ООС). Чтобы блок управления системы мог «увидеть» (почувствовать и измерить) результат действия системы, он должен иметь соответствующий рецептор «У» на выходе системы и линию связи между ним и рецептором «У» (реципрокный путь). Логика работы такого управления заключается в том, что если результат действия больше заданного, то нужно его уменьшить, активировав меньшее число СФЕ, если меньше – то увеличить, активировав большее число СФЕ. Поэтому такая связь называется отрицательной. А так как информация движется обратно, от выхода системы в сторону её начала, она называется обратной. В итоге получается отрицательная обратная связь (ООС). Рецептор «У» и реципрокный путь составляют ООС, а вместе с анализатором-информатором и эфферентными путями (стимулятором) составляют петлю ООС. В зависимости от потребности и на основе информации ОСС блок управления по мере необходимости включает или выключает функции управляемых СФЕ. Отличие данной системы от составной СФЕ только в наличии рецептора «У», который измеряет результат действия, и реципрокных путей, по которым информация передаётся с этого рецептора в анализатор. Число активных СФЕ определяется ООС. ООС реализуется с помощью петли ООС, которая включает в себя рецептор «У», реципрокный путь, по которым информация с рецептора «У» переносится в анализатор-информатор, сам анализатор и эфферентные пути, через которые решения блока управления передаются на эффекторы (управляемые СФЕ). Таким образом, система, в отличие от СФЕ, содержит как ППС, так и ООС. Прямая положительная (управляющая) связь активирует систему, а отрицательная обратная связь определяет число активированных СФЕ. Например, если в лёгких будет открыто больше альвеолярных капилляров, чем есть альвеол с подходящим газовым составом, то артериализация венозной крови будет неполной, и нужно закрыть ту часть альвеолярных капилляров, которые «омывают» кровотоком альвеолы с неподходящим для газообмена газовым составом. Если их будет открыто меньше, будет перегрузка лёгочного кровообращения и давление в лёгочной артерии возрастёт и нужно открыть часть альвеолярных капилляров. В любом случае срабатывает информатор лёгочного кровообращения, и блок управления решает, какую часть капилляров нужно открыть или закрыть. Отсюда, диффузионная часть сосудистого русла лёгких является системой, содержащей простой блок управления. Цель системы - результат действия «Y» должен быть равен приказу «М» (Y=M). Действия системы для достижения цели осуществляют элементы исполнения. Блок управления следит за правильностью выполнения действий. Блок управления, содержащий ППС и петлю ООС, является простым. Алгоритм работы простых блоков управления не отличается большой сложностью. Петля ООС постоянно отслеживает результат действия исполнительных элементов (СФЕ). Если результат действия получается больше, чем задано, нужно его уменьшить, если результат меньше заданного – нужно его увеличить. Через приказ задаются параметры управления («база данных»), например, каким должно быть соотношение между внешним воздействием и результатом действия, или какой уровень результата действия нужно постоянно удерживать и т.д. При этом максимальной точностью будет результат действия одной СФЕ (квант действия). Системы с ООС, как и составные СФЕ, также содержат два типа объектов: элементы исполнения (СФЕ) (эффекторы, которые выполняют специфические действия для достижения заданной генеральной цели системы) и блок управления (ППС и петля ООС). Но блок управления системы кроме информатора «Х» также содержит и информатор «У» (ОСС). Поэтому у него есть информация и о внешнем воздействии, и о результате действия. Небольшое усложнение блока управления приводит к очень существенному результату. Причина усложнения – необходимость получения оптимально точного выполнения цели системы. ООС даёт возможность регуляции количества результата действия, т.е., система с ООС может оптимально выполнить любое необходимое действие, от минимума до максимума с точностью до одного кванта действия. Вообще говоря, в любой реальной системе есть ещё и третий тип объектов: элементы обслуживания – вспомогательные элементы, без которых элементы исполнения не смогут работать. Например, у самолёта есть крылья для того, чтобы летать, но у него есть также и колёса, чтобы взлетать и садиться. Молекула гемоглобина содержит гем, который содержит 4 СФЕ (лиганды) и глобин – белок, который прямо не участвует в переносе кислорода, но без которого гем не сможет работать. Мы слегка коснулись вопроса существования третьего типа объектов (элементов обслуживания) только для того, чтобы знать, что они всегда присутствуют в любой системе, но подробно рассматривать их функции мы не будем. Отметим только, что они представляют такие же обычные системы с целью обслуживать другие системы. Системы с ООС могут решать большинство задач намного лучше, чем простые или составные СФЕ. Наличие ООС почти не усложняет систему. Мы видели, что уже простая СФЕ является очень сложным образованием, включающим в себя множество компонентов. Составная СФЕ сложнее простой СФЕ на число раз, почти равное числу простых СФЕ в ней. В системе с ООС добавляется всего лишь один рецептор и линия связи между рецептором и анализатором (реципрокный путь). Но эффект от такого изменения структуры блока управления очень большой и он зависит только от алгоритма работы блока управления. Любая СФЕ (простая и составная) может выполнить только минимум или максимум действия. Системы с ООС уже могут дать оптимум результата действия, от минимума до максимума, они являются точными и стабильными. Их точность зависит только от величины кванта действия отдельной СФЕ и глубины ООС (см. ниже). Стабильность обусловлена тем, что система постоянно «видит» свой результат действия, может сравнивать его с должным и исправлять его, если есть расхождение.

В реальных системах всегда есть причины для расхождения, потому что они существуют в реальном мире, где всегда есть возмущающие воздействия. Отсюда видно, что именно ООС превращает СФЕ в настоящие системы. Каким образом блок управления управляет системой? Какие параметры его характеризуют? Любой блок управления характеризуется тремя параметрами ППС и столько же параметров петли ООС. Для ППС это минимальный уровень контролируемого входного воздействия (порог чувствительности); максимальный уровень контролируемого входного воздействия (диапазон чувствительности входного воздействия); время включения управления (время принятия решения). Для петли ООС это минимальный уровень контролируемого результата действия (порог чувствительности петли ООС - глубина ООС); максимальный уровень контролируемого результата действия (диапазон чувствительности результата действия); время включения управления (время принятия решения). Минимальный уровень контролируемого входного сигнала для ППС – это порог чувствительности сигнала рецептора «Х», начиная с которого анализатор-информатор распознаёт, что внешнее воздействие уже началось. Например, если рО2 достигло 60 мм Hg, то должен быть открыт сфинктер (срабатывает 1 СФЕ), если меньше – закрыт. Любые значения рО2, меньшие чем 60 мм Hg не приведут к открытию сфинктера, потому что они подпороговые. Следовательно, 60 мм Hg являются порогом срабатывания сфинктера. Максимальный уровень контролируемого входного сигнала (диапазон) для ППС – это уровень сигнала о внешнем воздействии, при котором срабатывают все СФЕ. На дальнейшее увеличение входного сигнала система же не может реагировать увеличением своей функции, потому что у неё нет больше резервов СФЕ. Например, если рО2 достигло 100 мм Hg, то должны быть открыты все сфинктеры (срабатывают все СФЕ). Любые значения рО2, большие чем 100 мм Hg не приведут к открытию дополнительных сфинктеров, потому что они все уже открыты. Т.е., 60-100 мм Hg являются диапазоном срабатывания системы сфинктеров. Время включения ППС – промежуток времени между началом внешнего воздействия и началом срабатывания системы. Система никогда не срабатывает мгновенно после появления внешнего воздействия. Пока рецепторы почувствуют сигнал, пока анализатор-информатор примет решение, пока эффекторы передадут управляющее воздействие на входы приказов исполнительных элементов, на всё это уходит время. Минимальный уровень контролируемого выходного сигнала для ООС – это порог чувствительности сигнала рецептора «У», начиная с которого анализатор-информатор распознаёт, что есть расхождение между результатом действия системы и его должной величиной.

Расхождение должно быть равно или больше кванта действия одиночной СФЕ. Например, если должен быть открыт один сфинктер и кровоток должен быть минимальным (один квант действия), а на самом деле открыто два сфинктера и кровоток в два раза больше (два кванта действия), то рецептор «У» должен почувствовать лишний квант. Если он может это сделать, то его чувствительность равна одному кванту. Чувствительность определяется глубиной ООС. Глубина ООС – это число квантов действия одиночных СФЕ системы, сумма которых распознаётся как расхождение между актуальным результатом действия и должным. Глубина ООС задаётся приказом. Максимально большой глубиной ООС является чувствительность расхождения в один квант действия одиночной СФЕ. Чем меньше глубина ООС, тем меньше чувствительность, тем она более «грубая». Т.е., чем меньше глубина ООС, тем большее расхождение результата действия с должным воспринимается как расхождение. Например, уже два (три, десять и т.д.) кванта действия двух (трёх, десяти и т.д.) СФЕ воспринимается как расхождение. Минимальной глубиной ООС является её отсутствие. В этом случае любое расхождение результата действия с должным не воспринимается блоком управления как расхождение. Результат действия будет максимальным и система с простым блоком управления с нулевой глубиной ООС превращается в составную СФЕ с ППС (с простейшим блоком управления). Например, система микроциркуляции БКК в тканевых капиллярах должна держать среднее давление 100 мм Hg с точностью до 1 мм Hg. При этом среднее артериальное давление может колебаться от 80 до 200 мм Hg. Величина «100 мм Hg» определяет уровень контролируемого результата действия. Величина «от 80 до 200 мм Hg» диапазон контролируемого внешнего (входного) воздействия. Величина «1 мм Hg» определяется глубиной ООС. Меньшая глубина ООС будет контролировать параметр с меньшей точностью, например с точностью до 10 мм Hg (более грубо) или 50 мм Hg (ещё грубее), а большая глубина ООС – с большей точностью, например с точностью до 0.1 мм Hg (более тонко).

Максимальная чувствительность ООС ограничена величиной кванта действия СФЕ, входящих в состав системы и глубиной ООС. Но в любом случае если происходит расхождение уровня контролируемого параметра с заданным, больше чем на величину заданной точности, петля ООС должна «почувствовать» это расхождение и «заставить» исполнительные элементы действовать таким образом, чтобы расхождение цели и результата действия исчезло. Максимальный уровень контролируемого выходного сигнала (диапазон) для ООС – это уровень сигнала о результате действия системы, при котором срабатывают все СФЕ. На дальнейшее увеличение входного сигнала система уже не сможет реагировать увеличением своей функции, потому что у неё нет больше резервов СФЕ. Время включения управления ООС – промежуток времени между началом расхождения сигнала о результате действия с целевым и началом срабатывания системы. Все эти параметры могут быть «встроены» в ППС и в петли ООС либо изначально (приказ вводится при их «рождении» и в дальнейшем они уже не меняются), либо могут быть введены с приказом позже, и эти параметры можно менять путём ввода извне нового приказа. Для этого должен быть канал ввода приказа. Сам же простой блок управления сам по себе не может менять ни один из этих параметров. Абсолютно у всех систем есть блок управления, но не всегда его можно явно обнаружить. У самолёта или космического корабля этим блоком является бортовой компьютер – коробка с электроникой. У человека и животных таким блоком является головной мозг, или как минимум – нервная система. Но где блок управления у растения, или у бактерии? Где блок управления у атома или молекулы, или, например, блок управления у гвоздя? Чем проще система, тем труднее выделить в нём привычные для нас формы блока управления. Но он есть в любых системах. Элементы исполнения отвечают за качество результата действия, а блок управления – за его количество. Блоком управления могут быть, например, внутри- или межатомные и межмолекулярные связи. Например, в атоме функции СФЕ выполняют электроны, протоны и нейтроны, а блок управления – внутриядерные силы, или, как ещё говорят, взаимодействия. Внутриатомным приказом, например, является условие, что на первом электронном уровне может быть не более 2 электронов, на втором – 8 электронов и т.д. (периодический закон, определяемый принципом Паули), причём этот уровень жестко задан квантовыми числами. Если электрон каким-то образом получил добавочную энергию и поднялся выше своего уровня, то он не сможет её долго удерживать и опустится обратно, испустив излишек энергии в виде фотона. Причём не любая энергия может поднять электрон на другой уровень, а только и только определённая (соответствующий квант энергии). И поднимается он не на любой уровень, а только на строго заданный.

Если энергия внешнего воздействия будет меньше соответствующего кванта, система стабилизации уровня электрона будет удерживать его на прежней орбите (в прежнем состоянии) до тех пор, пока энергия внешнего воздействия не превысит соответствующий уровень. Если же энергия внешнего воздействия будет всё время линейно нарастать, то электрон будет подниматься с уровня на уровень не линейно, а перескакивать скачками, которые строго определены квантовыми законами, на всё более высокие орбиты, как только энергия воздействия превысит определённые пороговые уровни. Число уровней орбиты электрона в атоме, вероятно, очень большое и равно числу спектральных линий соответствующего атома, но каждый уровень строго фиксирован и определён квантовыми законами. Следовательно, какой-то механизм (система стабилизации квантовых уровней) строго следит за выполнением этих законов, и у этого механизма должны быть свои СФЕ и блоки управления. Число уровней орбиты электрона, вероятно, определяется числом внутриядерных СФЕ (протонов и нейтронов или же других элементарных частиц), результатом действия которых является положение электрона на электронной орбите. Например, у гвоздя приказом являются его форма и геометрические размеры. Этот приказ вводится в блок управления однократно в момент изготовления гвоздя, когда отмеряются его размеры (в момент его «рождения»), и больше уже не вводится. Но когда приказ уже введен, то система должна выполнять этот приказ, т.е., в данном случае гвоздь должен сохранять форму и размеры, даже если по нему бьют молотком. В любых типах блока управления в какой-то момент должен быть введен приказ тем или иным образом. Мы не можем изготовить гвоздь «вообще», а только конкретной формы и заданных размеров. Поэтому, в момент его изготовления (т.е., однократно) мы даём ему «задание» быть такой-то формы и размеров.

Приказ может меняться, если есть канал ввода приказа. Например, при включении кондиционера воздуха, мы можем «задать» ему держать температуру воздуха 20°С, а затем поменять приказ на 25°С. У гвоздя нет канала ввода приказа, а у кондиционера есть. Таким образом, система с простым блоком управления является объектом, который может реагировать на определённое внешнее воздействие, а результат её действия градуирован и стабилен. Число градаций определяется числом СФЕ в системе, а точность – квантом (размером, результатом) действия одиночной СФЕ и глубиной ООС. Результат действия точный потому, что блок управления контролирует его с помощью ООС. Тип управления – по рассогласованию. Управление начинается только после появления внешнего воздействия или результата действия. Стабильность результата действия определяется глубиной ООС. Реакция системы обусловлена типом и числом её СФЕ. У простого блока управления есть три канала управления – один внешний (приказ) и два внутренних (ППС и ООС). Он реагирует на внешнее воздействие через ППС (информатор «Х») и на собственный результат действия системы (информатор «У») через ООС, а через эфферентные пути управляет исполнительными элементами системы. Аналогом систем с простым блоком управления являются все объекты неживого мира – газовые облака, кристаллы, различные твёрдые тела, планеты, планетарные и звёздные системы и т.д. Биологическим аналогом систем с простым блоком управления являются одно- и многоклеточные растения, бактерии и все вегетативные системы организма, включая, например, систему внешнего газообмена, систему кровообращения, систему обмена метаболических газов, систему пищеварения или иммунную систему. Одноклеточные животные организмы типа амёб и инфузорий, низшие классы животных (медузы и пр.) уже являются системами со сложными блоками управления (см. далее). Все вегетативные и многие двигательные рефлексы высших животных, срабатывающие на всех уровнях, начиная с интрамуральных нервных ганглиев и вплоть до гипоталамуса, построены по типу простых блоков управления. Если же на них оказывается управляющее влияние коры головного мозга, то появляются рефлексы более высокого типа – сложные рефлексы (см. ниже). Аналогом рецепторов информатора «Х» являются все чувствительные рецепторы (хемо-, баро-, термо- и прочие рецепторы, расположенные в различных органах, кроме зрительных, слуховых и обонятельных рецепторов, которые входят в состав информатора «С», см. далее). Аналогом рецепторов информатора «У» являются все проприо-чувствительные рецепторы, которые также могут быть хемо-, баро-, термо- и прочими рецепторами, расположенные в различных органах. Аналогом стимуляторов блока управления являются все двигательные и эффекторные нервы, стимулирующие поперечно-полосатую, гладкомышечную мускулатуру и секреторные клетки, а также гормоны, протогландины и прочие метаболиты, оказывающие какое-либо влияние на функцию каких-либо систем организма. Аналогом анализатора-информатора в минеральном и растительном мирах являются только связи между элементами по типу прямого соединения информаторов «X» и «У» с эффекторами (аксон-рефлексы). В вегетативных системах животных – также по типу прямого соединения информаторов «X» и «У» с эффекторами (гуморальная и метаболическая регуляция), по типу аксон-рефлекса (управляют только веточки нерва без участия самой нервной клетки) и по типу безусловных рефлексов (на уровне внутриорганных интрамуральных и других нейронных образований вплоть до гипоталамуса). Таким образом, используя ППС и ООС и регулируя работу своих СФЕ система продуцирует свои результаты действия, качественно и количественно соответствующие заданной цели.

Принцип независимости результата действия. Как уже неоднократно подчеркивалось, целью любой системы является получение должного (целевого) результата действия, который получается после действий системы. Фактически внешнее воздействие, «войдя» в систему преобразуется в результат действия системы. Поэтому системы фактически являются преобразователями внешнего воздействия в результат действия, причины в следствие. А внешнее воздействие является результатом действия другой системы, которая взаимодействовала с данной. Следовательно, результат действия, «выйдя» из одной системы и «войдя» в другую, существует уже независимо от системы его породившей. Например, у строительной фирмы была цель из определённого количества строительного материала (внешнее воздействие) построить дом. После ряда действий этой фирмы дом оказался построен (результат действия). Далее фирма могла перейти к строительству другого дома, прекратить свое существование или переквалифицироваться из строительной в пошивочную. Но построенный дом уже будет существовать независимо от построившей его фирмы. Целью автомобильного мотора (подсистемы автомобиля) является сжигание определённого количества горючего (внешнее воздействие для мотора) для получения определённого количества механической энергии (результат действия мотора). Целью ходовой части (другой подсистемы автомобиля) является преобразование механической энергии мотора (внешнее воздействие для ходовой части) в определённое количество оборотов колёс (результат действия ходовой части). Целью колёс является преобразование определённого числа их оборотов (внешнее воздействие для колёс) в пройденные километры пути (результат действия колёс). В целом, результатом действия автомобиля будут пройденные километры пути, которые уже будут существовать независимо от проехавшего по ним автомобиля. Результатом действия возбуждённого электрона будет выпущенный из атома фотон, который может бесконечно блуждать по просторам Вселенной на протяжении многих миллиардов лет. Результатом шлепка весла о воду является ямка на воде, которая также могла бы остаться на века, если бы не текучесть воды и не воздействие на неё тысяч других внешних воздействий. Однако после тысячи воздействий она останется уже не в виде ямки, а в виде другой длинной цепи результатов действий других систем, потому что ничто в этом мире не исчезает, а переходит в другие формы. Закон сохранения нерушим.

 

7 октября [Лекции]

Лекция №2

На практике часто встречаются ситуации, когда оценить значение вероятности события достаточно сложно. В этих случаях часто применяют методы, не использующие численные значения вероятностей: максимакс – максимизация максимального результата проекта; максимин – максимизация минимального результата проекта; минимакс – минимизация максимальных потерь; компромиссный – критерий Гурвица: взвешивание минимального и максимального результатов проекта. Для принятия решений об осуществлении инвестиционных проектов строят матрицу. Столбцы матрицы соответствуют возможным состояниям природы – ситуациям, над которыми руководитель предприятия не властен. Строки матрицы соответствуют возможным альтернативам осуществления инвестиционного проекта – стратегии, которые может выбрать руководитель предприятия. В клетках матрицы указываются результаты каждой стратегии для каждого состояния природы. Пример: предприятие анализирует инвестиционный проект строительства линии по производству нового вида продукции. Существуют две возможности: построить линию большой мощности или построить линию малой мощности. Чистая приведенная стоимость проекта зависит от спроса на продукцию, а точный объем спроса неизвестен, однако известно, что существуют три основные возможности: отсутствие спроса, средний спрос и высокий спрос. В клетках матрицы (см. таблицу 1) показана чистая приведенная стоимость проекта в соответствующем состоянии природы при условии, что предприятие выберет соответствующую стратегию. В последней строке показано, какая стратегия оптимальна в каждом состоянии природы. Максимаксное решение – построить линию большой мощности: максимальная чистая приведенная стоимость при этом составит 300, что соответствует ситуации высокого спроса. Максимальный критерий отражает позицию руководителя – оптимиста, игнорирующего возможные потери. Максиминное решение – построить линию малой мощности: минимальный результат этой стратегии – потеря 100 (что лучше, чем возможная потеря 200 при строительстве линии большой мощности).  Максиминный критерий отражает позицию руководителя, совершенно не склонного рисковать и отличающегося крайним пессимизмом. Этот критерий весьма полезен в ситуациях, где риск особенно высок (например, когда от результатов инвестиционного проекта зависит само существование предприятия). Угроза определяется двумя составляющими: возможностями и намерением противника.

Таблица 1. Пример построения матрицы стратегий и состояний природы для инвестиционного проекта.

Стратегия

Состояние природы: отсутствие спроса

Состояние природы: средний спрос

Состояние природы: высокий спрос

Построить линию малой мощности

100

150

150

Построить линию большой мощности

200

200

300

Оптимальная стратегия для данного состояния природы

Построить линию малой мощности

 

Построить линию большой мощности

Построить линию большой мощности

Для применения минимаксного критерия построим “матрицу сожалений” (см. таблицу 2). В клетках этой матрицы показана величина “сожаления” – разность между фактическим и наилучшим результатами, которого могло бы добиться предприятие в данном состоянии природы. “Сожаление” показывает, что теряет предприятие в результате принятия неверного решения. Минимаксное решение соответствует стратегии, при которой максимальное сожаление минимально. В нашем случае для линии малой мощности максимальное сожаление составляет 150 (в ситуации высокого спроса), а для линии большой мощности – 100 (при отсутствии спроса). Поскольку 100 < 150, минимаксное решение – построить линию большой мощности. Минимаксный критерий ориентируется не столько на фактические, сколько на возможные потери или упущенную выгоду.

Таблица 2.

Пример построения “матрицы сожалений” для минимаксного критерия

Стратегия

Состояние природы: отсутствие спроса

Состояние природы: средний спрос

Состояние природы: высокий спрос

Построить линию малой мощности

(-100) – (-100)=0

200 – 150=50

300 – 150=150

Построить линию большой мощности

(-100) – (-200)=100

200 – 200=0

300 – 300=0

Оптимальная стратегия для данного состояния природы

Построить линию малой мощности

 

Построить линию большой мощности

Построить линию большой мощности

Критерий Гурвица заключается в том, что минимальному и максимальному результатам каждой стратегии присваивается “вес”. Оценка результата каждой стратегии равна сумме максимального и минимального результатов, умноженных на соответствующий вес.

Пусть вес минимального результата равен 0,5, вес максимального – также 0,5 (это вероятностная характеристика, в данном случае вероятность наступления любого варианта событий = 50%, так как у нас 2 варианта, то 50% + 50%=100%, если будет 3 варианта, тогда коэффициент может быть 33,33 (%) для каждого или, например 20%, 25% и 55%). Тогда расчет для каждой стратегии будет следующим:

линия малой мощности: 0,5 х (- 100) + 0,5 х 150 = (- 50) + 75 = 25;

линия большой мощности: 0,5 х (- 200) + 0,5 х 300 = (- 100) + 150 = 50.

Критерий Гурвица свидетельствует в пользу строительства линии большой мощности (поскольку 50 > 25). Достоинство и одновременно недостаток критерия Гурвица заключается в необходимости присваивания весов возможным исходам; это позволяет учесть специфику ситуации, однако в присваивании весов всегда присутствует некоторая субъективность. Вследствие того, что в реальных ситуациях часто отсутствует информация о вероятностях исходов, использование представленных выше методов в проектировании инвестиционных проектов вполне оправданно. Но выбор конкретного критерия зависит от специфики ситуаций и от индивидуальных предпочтений аналитика (стратегии компании). Обсудите в группе изученный материал. Самостоятельно подберите примеры различный стратегий – для максимакса, максимина, минимакса и компромиссного метода оценки (критерий Гурвица).

 

7 октября [Лекции]

Лекция №1 (Вводная)

Как известно, образование и наука являются одним из стратегических ресурсов государства, одной из основных форм культуры цивилизации, а также конкурентным преимуществом каждой личности. Глобальные открытия современности происходят как в глубине, так и на стыке различных наук, причем зачастую, чем необычнее сочетание наук, тем большие научные перспективы сулит нестандартный взгляд на их комбинацию - например, биология и электроника, филология и математика и т.п. Открытия в одной области стимулируют развитие и в других сферах науки. Научное развитие общества является планируемым и прогнозируемым явлением, этим вопросом занимается, в частности футурология науки. Современные средства педагогики, психологии, медицины и других наук позволяют не только произвести ориентацию и информационную "накачку" человеческого мозга, но и сформировать личность, оптимально подходящую для роли ученого. В отличие от компьютера человек имеет ничем пока не замененный элемент мышления - интуицию (хотя в этой сфере уже появились некоторые разработки). Узкая специализация научных работников сужает поле их деятельности и объясняется огромным объемом информации, необходимой современному ученому. Эта проблема решается (хотя бы частично) целым комплексом мероприятий – интеллектуализацией компьютеров, "упрощением" информации (сведением её к кратким, но ёмким формулам и формулировкам), применением психотехнологий. Психотехнологии (мнемотехника, учебные игры, гипнопедия, (ауто -) гипноз, средства и методы пропаганды и рекламы, в т.ч. технотронные и фармакологические (ноотропы) и т.п.) позволяют решить следующую проблему. Применяемое в информатике понятие "черный ящик" обозначает систему, в которую вводится хаотичная информация, а через какое – то время выходит версия, гипотеза или теория. Такой системой (с некоторыми оговорками) является и человек. Обработка информации идет сознательно и подсознательно по определённым правилам (программе). Чем больше правил обработки информации мы вводим, тем меньше степеней свободы остаётся в системе. Следовательно, желательно вводить самые базовые аксиомы. Различия в программах (даже простое умолчание - но без недостатка ключевой информации) формируют различия во мнениях и аргументации. Чем больший срок действует программа (в т.ч. по внутренним биочасам), тем больший эффект можно ожидать. Вероятность успеха прямо пропорциональна количеству проб, следовательно, базовые механизмы научного мышления желательно закладывать в достаточно раннем возрасте у максимально широкой аудитории и стимулировать их активную работу, а через определенные промежутки времени производить оценку и корректировку "программ" мышления. «Усвоение человеком новых умений происходит только скачкообразно. Имеет место переход между двумя психическими состояниями: «я никогда не пойму, как это делается, и не смогу этого делать» и «это настолько очевидно, что я не могу понять, что здесь можно объяснять». Если не говорить о первых годах жизни ребенка, скачки данного типа происходят при овладении чтением, при овладении письмом, при всех стандартных расширениях множества чисел (дробные, отрицательные, рациональные числа, но не комплексные числа), при овладении понятием бесконечно малой величины и следствий из него (пределы), при овладении дифференцированием, при овладении интегрированием, при овладении комплексом специфических умений, образующих специальность, при овладении комплексом специфических умений, образующих явление информационного генерирования (иначе говоря, при переходе от изучения науки или искусства к осознанному профессиональному творчеству). Заметим, что на любой из этих стадий по причинам, которые нам не вполне ясны, скачка может не произойти. Это означает, что некоторое умение не перешло в стадию неосознаваемого профессионального применения и не может произвольно использоваться личностью для решения возникающих перед ней проблем. При этом необходимый алгоритм вполне может быть известен. Иными словами, человек знает буквы. Он знает, как их писать. Он может складывать из них слова. Он может написать предложение. Но! Эта работа потребует от него напряжения всех умственных и большей части физических сил. В связи с тем, что все ресурсы мозга расходуются на процедуру письма, неизбежны ошибки. Очевидно, что, несмотря на формальную грамотность (знание алгоритма есть), человек не может заниматься какой бы то ни было деятельностью, для которой одним из базовых или хотя бы значимых навыков является умение писать. Подобное состояние личности широко известно в современной педагогике и называется функциональной неграмотностью. Точно так же можно говорить о функциональном неумении интегрировать (весьма частая причина отчисления студентов с 1-го, 2-го курсов физико-математических специальностей). Любопытно, что на более высоких ступенях скачок не происходит настолько часто, что это даже считается нормальным. Формула: «Отличный студент, но неудачно выбрал себе призвание. Ну, не физик он по мышлению – что тут поделать?» (не произошел скачок, позволяющий автоматически применять определенный – в данном случае физический – стиль мышления). Что же касается автоматического творчества, то эти понятия вообще считаются несоединимыми, а людей, для которых процесс создания новых сущностей в науке и культуре есть обыденная профессиональная работа, не требующая особого напряжения сил, называют гениями. Однако же ребенку, больному функциональной неграмотностью, сверстник, овладевший письмом настолько, что он даже в состоянии писать, не глядя в тетрадь, тоже покажется гением! Тем самым мы приходим к выводу, что творчество на уровне простой гениальности в принципе доступно каждому. Современное образование транслирует учащемуся знания (90% которых, как показали исследования, благополучно и почти немедленно забываются) и очень ограниченное количество навыков, скачкообразно переводящих личность на следующую ступень интеллектуального или физического развития. Следует четко осознать, что бесконечные школьные упражнения и домашние задания, изнуряющие спортивные тренировки – все это не более чем бесконечные «броски кубика» в надежде на выпадение счастливой цифры – в надежде на «щелчок». А «щелчок» может произойти с первой попытки. Может не произойти никогда. Соответственно принцип «повторение – мать ученья» в сущности, сводится к давно и справедливо заклейменному ТРИЗовцами «методу проб и ошибок». По сути, скачкообразный характер перехода между ин– и аут- состояниями при «щелчке» наводит на мысль, что речь идет о структурном преобразовании психики. То есть «щелчок» требует разрушения структуры (образа мышления, картины мира) и создании другой, в которую новый навык включен «аппаратно», чтобы использоваться автоматически. Ограничения стимулируют внутреннюю активность. Доказано, что творческое задание без условий: «Нарисуйте что-нибудь» выполняется менее продуктивно и оригинально, нежели творческое задание с ограничениями: «Нарисуйте необычное животное карандашом за 30 минут» (Сергей Переслегин). Необходимые личные качества - черты характера, можно разделить на четыре условные группы – необходимые, желательные, нежелательные и недопустимые. Знания можно разделить на две группы - средства и способы обработки информации (в т.ч. философия, логика, математика и др. – это так называемые мета – навыки или мета – знания – они универсальны и применимы в любой сфере деятельности) и собственно предмет (предметы) изучения. С точки зрения методологии все методы научного познания могут быть разделены на пять основных групп: 1. Философские методы. Сюда относятся диалектика и метафизика. 2. Общенаучные (общелогические) подходы и методы исследования - анализ и синтез, индукция и дедукция, абстрагирование, обобщение, идеализация, аналогия, моделирование, вероятностно-статистические методы, системный подход и т.п. 3. Частно – научные методы - совокупность способов, исследовательских приёмов, применяемых в той или иной отрасли знания. 4. Дисциплинарные методы, т.е. системы приёмов, применяемых в той или иной дисциплине. 5. Методы междисциплинарного исследования - совокупность ряда синтетических, интегративных способов, сформировавшихся главным образом на стыке научных дисциплин. Для научного познания характерно наличие 2-х уровней: эмпирического и теоретического. Для эмпирического познания характерна фактофиксирующая деятельность. Теоретическое познание - это сущностное познание, осуществляемое на уровне абстракций высоких порядков. Пытаться решить поставленную проблему можно 2 путями: искать нужную информацию или самостоятельно исследовать ее с помощью наблюдений, экспериментов и теоретического мышления. Наблюдение и эксперимент важнейшие методы исследования в научном познании. Часто говорят, что теория - это обобщение практики, опыта или наблюдений. Научные обобщения часто используют ряд особых логических приемов: 1) Прием универсализации, который состоит в том, что общие моменты и свойства наблюдаемые в ограниченном множестве экспериментов, распространяются на все возможные случаи. 2) Прием идеализации, состоящий в том, что указываются условия, при которых описываемые в законах процессы происходят в чистом виде, т.е. так, как в самой действительности они происходить не могут. 3) Прием концептуализации, состоящий в том, что в формулировку законов вводятся понятия, заимствованные из других теорий, и получившие в них достаточно точный смысл и значение. Важнейшие методы научного познания: 1) Метод восхождения от абстрактного к конкретному. Процесс  научного познания всегда связан с переходом от предельно простых понятий к более сложным - конкретным. 2) Метод моделирования и принцип системности. Состоит в том, что объект недоступный  непосредственному  исследованию  заменяется его моделью. Модель обладает схожестью с объектом в свойствах, интересующих исследователя. 3) Эксперимент и наблюдение. В ходе  эксперимента  наблюдатель искусственно изолирует ряд характеристик исследуемой системы  и  изучает  их  зависимость  от других параметров. Необходимо учитывать, что ежегодно устаревает около 10 - 25% научной информации, а в ближайшем будущем эта цифра может достичь 70%, по другим данным количество информации удваивается каждые 5 лет. Это означает, что применяемая в некоторых случаях система обучения и переподготовки "non-stop" станет явлением повсеместным и обязательным, а граница между необходимыми и желательными знаниями станет более размытой и условной. В современных условиях активное и целенаправленное изучение своей будущей сферы (сфер) деятельности следует начинать за 4-5 лет до поступления в ВУЗ. Значительное развитие получит "превентивное" (упреждающее) обучение с учетом перспектив развития науки на 3 - 5 - 10 лет. Свободное владение методами научно – аналитического и творческого мышления становится таким же социальным стандартом и признаком принадлежности к элитарным социальным группам, как, например, наличие диплома о высшем образовании. Закон обратной пропорциональности управляемости и способности к развитию гласит, что чем более управляема система, тем менее она способна к развитию. Управляемое развитие бывает только догоняющим. Немного об ошибках в процессе обучения. Традиционный подход рассматривает ошибку как недостаток обученности, усидчивости, внимания, прилежания и т.п. В результате виновной стороной является обучаемый. К ошибке необходимо относится как к конструктивному элементу в системе эвристического обучения. Учебное заведение как раз и является тем институтом, где человек должен совершать ошибки под руководством преподавателя. Важным элементом системы познания является профессиональная терминология. Незнание терминов не освободит вас от необходимости понимания… В каждом термине – концентрация массы нюансов и деталей, отличающих научную точку зрения на рассматриваемый вопрос от обыденного, ненаучного понимания. Необходимо отметить, что процесс обучения - это стресс, который имеет свои плюсы и минусы, при этом процесс изучения - это гораздо меньший стресс. Одной из главных задач в плане (само-) образования можно назвать формирование активного желания (внутренней потребности) учиться и заниматься (само-) образованием с самостоятельным поиском соответствующих средств и возможностей. Особое внимание придется обратить на средства и методы обучения - то, что приемлемо для одних групп обучаемых, может быть бесполезно для других. Основная дифференциация будет идти по возрастным категориям плюс индивидуальные особенности. Довольно универсальным инструментом по широкому кругу предметов и выработке практических навыков являются учебные игры, т.к. игра отражает поведение обучаемого в реальности. Это система, дающая мгновенную обратную связь. Вместо того чтобы слушать лекцию, обучаемый получает персональный урок, приспособленный к его нуждам. Игра – это моделирование действительности и метода воздействия на неё обучаемого. К минусам игр можно отнести некоторую условность и схематичность происходящего, и выработку у обучаемого поведенческих и мыслительных стереотипов. К основным стратегическим последствиям широкого распространения навыков научного мышления можно отнести системные (в т.ч. количественно - качественные) изменения в системе науки, образования и производства, резкое повышение мобильности рабочей силы (как "белых", так и "синих воротничков") и возможные глобальные социально - экономические и социально - политические изменения.

13 сентября [Лекции]

тестовая лекция

Просим рассмотреть нашу площадку в качестве регионального учебно-тренировочного центра для подготовки команд  Челябинской области к участию в проекте «Робототехника».

Просим рассмотреть нашу площадку в качестве регионального учебно-тренировочного центра для подготовки команд  Челябинской области к участию в проекте «Робототехника».

Просим рассмотреть нашу площадку в качестве регионального учебно-тренировочного центра для подготовки команд  Челябинской области к участию в проекте «Робототехника».

Просим рассмотреть нашу площадку в качестве регионального учебно-тренировочного центра для подготовки команд  Челябинской области к участию в проекте «Робототехника».

Просим рассмотреть нашу площадку в качестве регионального учебно-тренировочного центра для подготовки команд  Челябинской области к участию в проекте «Робототехника».

Просим рассмотреть нашу площадку в качестве регионального учебно-тренировочного центра для подготовки команд  Челябинской области к участию в проекте «Робототехника».

12 августа [Статьи]

Компьютерный вирус как инструмент анализа и модернизации современных средств защиты

Вирус, антивирус, вакцина, «прививка»?

Информационная безопасность и компьютерные угрозы с каждым годом привлекают все большее внимание. В первую очередь это связано с колоссальным ростом вирусной активности и настоящим разгулом кибер-преступности. Изощренность используемых методов проведения атак и организации кибер-преступлений говорит только об одном – этой деятельностью давно уже занимаются не просто «хулиганы», а настоящие профессионалы своего дела. Причем профессионалы высокоинтеллектуальные. Совершенно определенно настало время, когда бороться с кибер-угрозами необходимо качественно иными методами, а может быть и вовсе взять на вооружение инструменты, расценивавшиеся ранее исключительно как вредоносные – компьютерные вирусы.

1 2 3 4 5 6 15 16 Далее
Адаптивное тестирование - быстрая и точная оценка персонала
 

Категории статей

Поиск статьи