Лекция №4

Циклы системы и переходные процессы. У систем, как и у СФЕ, также есть циклы их деятельности. У разных систем могут быть разные циклы деятельности и они зависят от сложности и алгоритма блока управления. Самый простой цикл работы у системы с простым блоком управления. Он складывается из микроциклов: восприятие, селекции и измерения внешнего воздействия рецептором «X»; выбор из «базы данных» должного значения результата действия; переходный процесс (мультимикроцикл ООС);

a). восприятие и измерение результата действия рецептором «Y» – b). сравнение этого результата с должной величиной – c). выработка решения и соответствующего воздействия на СФЕ с целью коррекции результата действия – d). воздействие на СФЕ если результат действия не равен должному, или переход к 1-му микроциклу, если он равен должному – e). срабатывание СФЕ – f). возврат к «а)».

После начала внешнего воздействия срабатывает рецептор «X» (1-й микроцикл). Затем из «базы данных» выбирается то значение результата действия, которое должно соответствовать данному внешнему воздействию (2-й микроцикл). После этого начинается переходный процесс (переходный период, 3-й мультимикроцикл, цикл ООС): срабатывание рецептора «Y», сравнение результата действия с должной величиной, выбранной в «базе данных», корректирующее воздействие на СФЕ (включаются то число СФЕ, которое определил блок управления в микроцикле «с») и снова возврат к срабатыванию рецептора «Y». И так до тех пор, пока результат действия не будет равным данному. С этого момента цель достигнута и после этого блок управления возвращается к 1-му микроциклу, к рецепции внешнего воздействия. Деятельность же системы для выработки результата действия прекращается до тех пор, пока не появится новое внешнее воздействие.

К вышесказанному следует добавить очень существенное дополнение. При рассмотрении циклов срабатывания СФЕ уже указывалось, что после срабатывания любой СФЕ она полностью расходует свой запаса энергии, предназначенный для производства действия. Поэтому после завершения действия СФЕ не способна совершать новое действие до тех пор, пока она не восстановит свой энергетический потенциал, а на это уходит дополнительное время, которое может существенно увеличить длительность переходного периода. Поэтому у спортсмена, у которого система доставки кислорода в ткани велика (большая скорость поставки энергии), скорость движения тела, например бега, также велика. А у сердечного больного скорость движения тела низкая, потому что скорость поставки энергии снижена из-за поражения системы кровообращения, которая входит в состав системы энергоснабжения организма. У больных много времени уходит на восстановление энергетического потенциала мышечных клеток из-за замедленной продукции АТФ, требующей много кислорода.

Микроциклы с 1-го по 2-й составляют стартовый период работы блока управления. Если было короткое внешнее воздействие, блок управления определяет его во время стартового цикла и переходит к переходному периоду, во время которого стремится получить актуальный результат действия, равный должному. Если во время переходного периода снова появится внешнее воздействие, то блок управления не прореагирует на него, потому что в этот момент он не измеряет «Х» (рефрактерная фаза). По окончании переходного периода блок управления вновь обращается к стартовому периоду, но пока он это делает (обращается), достигнутое должное значение результата действия сохраняется неизменным (установившийся период).

Если внешнее воздействие достаточно длительно и не меняется, так что после первого достижения цели блок управления успевает вновь обратиться к рецепции «Х», то установившееся значение результата действия будет сохраняться до тех пор, пока будет продолжаться внешнее воздействие. При этом переходного цикла не возникнет, потому что установившееся значение результата действия равно должному. Если длительное внешнее воздействие будет продолжаться и менять свою амплитуду, то возможно появление нового переходного цикла. Причём амплитуда колебаний функции будет тем больше, чем больше изменение амплитуды внешнего воздействия. Поэтому резкие перепады амплитуды внешнего воздействия недопустимы, потому что они вызывают различные нежелательные эффекты, связанные с переходным периодом.

Если внешнее воздействие будет равно нулю, то все СФЕ дезактивируются, потому что нулевому внешнему воздействию соответствует нулевая активация СФЕ. Если спустя некоторое время появится новое внешнее воздействие, то система повторит всё в прежнем порядке. На длительность цикла работы системы также существенное влияние оказывают процессы восстановления энергетического потенциала сработавших СФЕ. Каждая СФЕ при своём срабатывании затрачивает определённое (квантованное) количество своей энергии, которая либо привносится самим внешним воздействием, либо накапливается какими-либо подсистемами энергоснабжения данной системы.

В любом случае восстановление энергетического потенциала также требует времени, но эти процессы мы не рассматриваем, потому что эти процессы касаются только элементов исполнения (СФЕ), а мы рассматриваем только процессы, происходящие в блоках управления систем. Так система постоянно циклически работает, выполняя свои микроциклы. Если нет внешнего воздействия или оно не меняется, то система находится на одном из своих стационарных уровней в одном и том же функциональном состоянии с одним и тем же числом функционирующих СФЕ, от нуля до всех. В таком режиме у неё нет переходного мультимикроцикла (длительного повтора 3-го микроцикла). При каждом изменении уровня внешнего воздействия возникают переходные процессы. Переход функции на новый уровень становится возможным лишь после того, когда система готова это сделать. У разных систем подобные микроциклы могут отличаться в деталях, но у всех без исключения систем есть мультимикроцикл ООС.

При всех достоинствах ООС у неё есть очень существенный недостаток – наличие переходных процессов. Выраженность переходных процессов зависит от очень многих факторов. Она может быть от минимальной до максимальной, но переходные процессы всегда есть у всех систем в той или иной степени выраженности. Они неустранимы принципиально, потому что ОСС срабатывает уже после появления результата действия системы. Пока аффекторы системы почувствуют рассогласование, пока блок управления примет соответствующее решение, пока эффекторы исполнят это решение, пока ООС измерит результат действия и подправит решение, и пока этот процесс повторится несколько раз до тех пор, пока не будет получено нужное соотношение «...внешнее воздействие → результат действия...», пройдёт некоторое время. Поэтому в это время могут возникнуть всякие неожидаемые нелинейные переходные процессы, нарушающие нормальный режим работы системы.

Поэтому при первом «включении» системы в действие или при резкой смене нагрузки ей нужен достаточно длительный период установления. И даже в установившемся режиме из-за различных случайных флюктуаций во внешней среде может быть небольшой сбой в работе ООС и могут появляться небольшие переходные процессы («шум» результата действия реальной системы). Наличие переходных процессов накладывает определённые ограничения на работу и область использования систем. Медленные инерционные системы не подходят для быстрых внешних воздействий, потому что быстродействие систем в первую очередь определяется быстродействием петли ООС. Да, быстродействие исполнительных элементов является основой быстродействия системы в целом, но мультимикроцикл ООС вносит свою существенную долю в удлинение цикла работы системы. Поэтому при выборе нагрузок на живой организм необходимо учитывать быстродействие системы и подбирать скорость нарастания нагрузок таким образом, чтобы выраженность переходных процессов была наименьшей. Чем медленнее меняется внешнее воздействие, тем меньше переходный процесс. При достаточно медленном изменении внешнего воздействия переходный период становится практически незаметным.

Следовательно, если внешнее воздействие меняется, то в зависимости от скорости этого изменения и от быстродействия элементов системы длительность переходного периода может быть от нуля до максимально возможного. Переходный процесс – это процесс перехода с одного уровня функционального состояния на другой. Чем «мельче» ступеньки перехода с одного уровня на другой, тем меньше амплитуда переходных процессов. При плавном изменении нагрузки нет переходных процессов. Выраженность переходных процессов зависит от калибра СФЕ, силы внешнего воздействия, от времени зарядки энергией СФЕ, от чувствительности рецепторов, от времени их срабатывания, от глубины ОСС и от алгоритма работы блока управления. Но эти циклы работы систем и переходные процессы есть и внутри атомов, и в электронных схемах, и в планетарных системах, и во всех остальных системах, наполняющих наш Мир, включая организм человека.

Если бы у систем не было переходных процессов, то время переходного периода всегда было бы равно нулю и системы были бы абсолютно безинерционными. Но таких систем нет и любой системе присуща инерционность в той или иной степени. Например, в электронике наличие переходных процессов порождает дополнительные гармоники колебаний электрического тока в различных усилителях или генераторах тока. Для их подавления применяются изощренные схемные решения, но они есть в любых электронных приборах, хотя и значительно подавленные. Постоянная времени систем с простыми блоками управления включает постоянные времени каждой СФЕ плюс непостоянные длительности переходных периодов ООС. Поэтому постоянная времени таких систем не совсем постоянная, потому что длительности переходных периодов ООС могут меняться в зависимости от силы внешнего воздействия. Переходные процессы в системах с простыми блоками управления увеличивают инерционность таких систем. Инерционность систем приводит к различным фазовым нарушениям синхронизации и баланса взаимодействия между системами. Бороться с переходными процессами можно очень многими способами.

Можно фильтровать внешние воздействия таким образом, чтобы не было резких ударных воздействий (фильтрация, принцип постепенности нагрузки). Если заранее знать характер внешних воздействий, предвидеть их, для чего нужно их сначала увидеть, что под силу как минимум только сложным блокам управления, то можно построить такой соответствующий алгоритм работы блока управления, чтобы 3-й микроцикл сразу нашел верное решение (управление по упреждению). Но это посильно только лишь интеллектуальным блокам управления. Полностью избавиться от инерционности систем, нам пока, видимо, не удаётся. Поэтому если внешнее воздействие не меняется и переходные процессы практически равны нулю, то система циклически и ровно работает на одном из своих стационарных уровней. Или гладко переходит с одного стационарного уровня на другой, если внешнее воздействие меняется, но достаточно медленно. Если переходные процессы становятся ощутимыми, то циклы работы системы становятся неравными из-за появления переходных мультимикроциклов – времени переходных процессов. Нелинейные эффекты при этом снижают эффективность работы системы. В нашей обыденной жизни мы часто сталкиваемся с переходными процессами, когда совершенно неподготовленные выходим из тёплой комнаты на холод и получаем простуду. В тёплой комнате все системы нашего организма были в определённом балансе своих взаимодействий и всё было нормально. Но вот мы вышли на холод и все системы должны сразу же перестроиться на новый баланс. Если они не успевают это сделать, если возникают слишком сильные переходные процессы, при которых появляются неожидаемые флюктуации результатов действий систем организма, то возникает дисбаланс взаимодействий систем, который мы называем простудой (здесь мы не уточняем частности, связанные с изменением состояния иммунной системы). Спустя некоторое время дисбаланс ликвидируется и простуда проходит.

Если мы будем закаляться, то сможем научить наши «блоки управления», как предвидеть резкие удары внешних воздействий, чтобы уменьшить переходные процессы, тогда мы сможем даже купаться в проруби. Особое значение для нас имеют переходные процессы, возникающие при резкой смене ситуации вокруг нас. Стресс-синдром прямо связан с этим явлением. Чем резче меняется ситуация вокруг нас, чем она более угрожающая (чем сильнее внешнее воздействие), тем резче переходные процессы, вплоть до парадоксальных реакций типа ступора. При этом возникает дисбаланс работы различных участков нервной системы (блоков управления), который приводит к дисбалансу работы различных систем организма и появлению различных патологических реакций и процессов, типа вегетоневрозов и депрессий, ишемий вплоть до инфарктов и язв, начиная с ротовой полости (афты) и до толстого кишечника (язвенные колиты, язвы желудка и 12-ти перстной кишки и т.д.), артериальной гипертонии и т.д.

Цикличность – это свойство систем не только живого организма. Любая система работает циклически. Если внешнее воздействие сохраняется на стабильном уровне, то работает этот минимальный установившийся цикл работы системы. Но и внешнее воздействие также может меняться циклически, например, от сна ко сну, от обеда до обеда и т.д. Это уже вторичные, третичные и т.д. циклы. Если построить графики функций системы, то получим волнообразные кривые, характеризующие цикличность. Примерами этому могут быть кривые пневмотахограммы, электрокардиограммы, кривые изменения кислотности желудочного сока, сфигмограммы, кривые электрической активности нейронов, периодичность альфа-ритма ЭЭГ и т.д.

Волны на море, смена времён года, движения планет, движения поездов и т.д., всё это примеры цикличности различных систем. Формы кривой цикличности могут самыми разнообразными. Кривая ЭКГ отличается от кривой артериального давления, и кривая артериального давления отличается от кривой давления в левом желудочке. Число форм кривых безгранично. Два основных параметра характеризуют цикличность – период (или обратная периоду величина – частота) и неравномерность периода, в понятие которой входит понятие гармоник частоты. У СФЕ (простейшая система) не должно быть неравномерности периода цикла, её циклы действия всегда одинаковы. Но у систем уже есть переходные периоды, у которых может быть различное время цикла. Кроме того, различные системы имеют собственные периоды цикла и при их взаимодействии происходит интерференция (наложение) периодов. Поэтому появляются дополнительные смещения собственных периодов систем, появляются гармоники циклов. Число таких наложений волн может быть сколь угодно большим. Поэтому реально мы наблюдаем очень большое разнообразие кривых – правильные синусоиды, неправильные кривые и т.д. Но любые кривые можно разложить на составляющие их волны, т.е., разложить интерференцию на её составляющие, используя специальные методы анализа, например, преобразования Фурье. В результате можно получить спектр более простых волн типа синусоиды. Чем более детальный (и одновременно более трудоёмкий) анализ, тем ближе форма каждой составляющей к синусоиде и тем большее число синусоидальных волн с разным периодом.

Период цикла системы – очень важный параметр для понимания процессов, происходящих в любой системе, в том числе и в живом организме. Его длительность зависит от постоянной времени реакции системы на внешнее воздействие. Начав очередной цикл действий, система не остановится, пока не закончит его. Можно попытаться воздействовать на систему в то время, когда она ещё не закончила свой цикл действий, но реакция системы на такое действие не будет адекватной. Скорость нарастания функций системы полностью зависит от времени периода цикла действий системы. Чем больше период цикла, тем медленнее система переходит от уровня к уровню.

Понятия абсолютной и относительной рефрактерности прямо связаны с понятием периода и фазы цикла системы. Если, например, миокард не закончил свой цикл «систола-диастола», то внеочередной (преждевременный) импульс водителя ритма или экстрасистолический импульс не сможет заставить желудочек выдать полноценный ударный выброс. В зависимости от того, на какую фазу рефрактерного периода придётся экстрасистолический импульс, величина ударного выброса может меняться от нуля до максимально возможного. Если возбуждающий импульс попадёт на 2-й и 3-й микроциклы, миокард вообще не прореагирует на них (абсолютная рефрактерность), потому что во время не измеряется информация с рецептора «X». После сокращения миокарду, как и любой другой клетке после её возбуждения, требуется некоторое время для восстановления энергетического потенциала (накопление АТФ) и для установки всех СФЕ в «стартовое» состояние.

Если в это время появится внеочередной импульс, то ответ системы возможен в зависимости от того, сколько АТФ уже накопилось или в какой степени разошлись акто-миозиновые нити саркомеров миокарда, чтобы снова включиться в функцию (относительная рефрактерность). Возбудимость невозбуждённой клетки наибольшая. В момент её возбуждения возбудимость резко падает до нуля (все СФЕ в действии, 2-й микроцикл) – абсолютная рефрактерность. Затем, если нет последующего возбуждения, система постепенно восстанавливает свою возбудимость, проходя через фазы относительной рефрактерности, до первоначальной и даже выше (сверхвозбудимость, в рамках данной работы не рассматривается), и затем снова до первоначального уровня. Поэтому у больных сердечной недостаточностью может наблюдаться неравномерность пульса, когда пульсовые толчки неравномерны по силе. Крайним проявлением такой неравномерности является так называемый «дефицит пульса» – есть электрическая активность сердца на ЭКГ, но нет её механического (гемодинамического) аналога на сфигмограмме и при пальпации пульса ударного толчка не ощущаем.

Главные выводы из всего вышесказанного: любые системы работают циклически, проходя через микроциклы; у любой системы есть переходные процессы; период цикла у каждой системы может быть различен и зависит от постоянной времени реакции системы на внешнее воздействие (в живых системах – от скорости биохимических реакций и от скорости проведения управляющих сигналов); неравномерность периода цикла системы зависит от наличия переходных процессов, следовательно, в определённой степени, от силы внешнего воздействия; неравномерность периода цикла системы зависит от наложения периодов циклов взаимодействующих систем; по окончании цикла действий после одиночного воздействия система возвращается в исходное состояние, в котором она была до начала внешнего воздействия (на одиночное внешнее воздействие – одиночный результат действия). Последнее не касается так называемых генерирующих систем. Это связано с тем, что после того, как результат действия был произведен системой, он становится независим от произведшей его системы и сам может стать внешним воздействием для неё же. Если подать его на вход внешнего воздействия той же системы, она опять возбудится и снова произведёт новый результат действия (положительная обратная связь, ПОС). Так работают все генераторы. Таким образом, если на систему оказывается первое внешнее воздействие, или внешнее воздействие постоянно меняется, число функционирующих СФЕ системы меняется. Если на систему не оказывается никакого внешнего воздействия или это воздействие есть, но оно не меняется, то число функционирующих СФЕ системы не меняется. Отсюда мы можем вывести определения стационарных состояний и динамичности процесса. 

Функциональное состояние системы. Функциональное состояние системы определяется числом активных СФЕ. Если все СФЕ одновременно функционируют – это максимально высокое функциональное состояние, которое возникает при максимальном внешнем воздействии. Если ни одна СФЕ не активна – это минимальное функциональное состояние. Это может быть при отсутствии внешнего воздействия. Внешняя среда постоянно оказывает какое-либо воздействие на любые системы, включая системы организма. Даже в состоянии покоя сила земного притяжения заставляет работать часть наших мышц, и поэтому нет абсолютного покоя. Таким образом, когда мы как будто находимся в состоянии покоя, на самом деле мы находимся на одном из низких уровней физической нагрузки с соответствующим определённым низким уровнем функционального состояния организма. Любое внешнее воздействие, требующее дополнительной активной деятельности, переводит на новый уровень функционального состояния, если только резерв СФЕ не исчерпан. Когда новое воздействие устанавливается на новом неизменном (стационарном) уровне, то и функциональное состояние системы устанавливается в новом неизменном (стационарном) функциональном уровне.

Стационарные состояния. Стационарным является такое состояние систем, когда в этих системах функционирует одно и то же число СФЕ и не происходит изменения их функционального состояния. Например, в состоянии покоя все системы организма не меняют своего функционального состояния, поскольку всё время функционирует примерно постоянное число СФЕ. Бегунья, которая бежит на длинной дистанции достаточно долгое время, не меняя скорости бега, также находится в стационарном состоянии. Её нагрузка не меняется и поэтому не меняется число работающих (функционирующих) СФЕ, т.е., не меняется функциональное состояние её организма. Организм уже «вработался» в эту не меняющуюся нагрузку, а поскольку нет прироста нагрузки, то нет и прироста числа работающих СФЕ. Число работающих СФЕ сохраняется постоянным и поэтому функциональное состояние организма не меняется. У данной бегуньи может меняться, например, состояние систем тканевой энергопродукции и систем тканевого энергопотребления, что и является процессом утомления организма. Однако если бегунья правильно спланировала тактику бега таким образом, чтобы не входить в состояние анаэробного обмена, то состояние систем внешнего газообмена и кровообращения не меняется. Таким образом, нет физической нагрузки, или она есть, но не меняется (стационарная физическая нагрузки – steady state, при условии её адекватности возможностям организма), организм субъекта будет находиться в стационарном состоянии. Но если бегунья будет бежать в условиях анаэробного обмена, то начнёт работать порочный круг и функциональное состояние её организма будет неуклонно меняться в худшую сторону. (Порочный круг – это реакция системы на собственный результат действия. Его основа – гиперреакция системы на обычное воздействие, потому что к силе обычного внешнего воздействия добавляется результат действия самой системы, который независим от неё и сам является уже внешним воздействием для неё же. Таким образом, обычное внешнее воздействие плюс воздействие собственного результата действия в итоге даёт гипервоздействие и в ответ получается гиперреация системы (перегрузка системы). Результатом этой реакции является разрушение собственных СФЕ с накопленим дефектов и прогрессирующим снижением качества жизни. На начальных стадиях, пока функциональные резервы ещё большие, порочный круг срабатывает при относительно большой силе внешнего воздействия (при больших нагрузках). Но по мере разрушения СФЕ и накопления дефектов нарастает перегрузка смежных систем и их разрушение (принцип домино), уровень переносимости нагрузки будет снижаться, и со временем даже слабые внешние воздействия будут вызывать срабатывание порочного круга и могут оказаться чрезмерными. В конце концов, уже состояние покоя будет чрезмерной нагрузкой для организма с разрушенными СФЕ, а это уже несовместимо с жизнью. Обычно прекращение нагрузки прерывает этот порочный круг.

Динамические процессы. Динамическим процессом является процесс изменения функционального состояния системы. Система находится в динамическом процессе тогда, когда происходит изменение числа её СФЕ, включенных в действие. Число постоянно включенных в действие СФЕ определяет стационарное состояние системы. Отсюда, динамический процесс – это процесс перехода системы с одного стационарного уровня на другой. Если скорость изменения внешних воздействий превышает скорость установления заданного результата действия системы, то появляются переходные процессы (мультимикроциклы), во время которых также происходит изменение числа функционирующих СФЕ. Поэтому эти переходные процессы также являются динамическими.

Следовательно, есть два типа динамических процессов – когда система переходит с одного своего стационарного состояния (уровня) на другой и когда она находится в переходном мультимикроцикле. Первый из них является целевым, а второй обусловлен несовершенством систем и является паразитным, потому что на его действия отбирается дополнительная энергия, которая была предназначена на целевые действия. В стационарном состоянии системы функционирует некоторое определённое число СФЕ, от нуля до всех. Минимальным шагом изменения уровня функционального состояния является величина, определяемая уровнем срабатывания одной СФЕ (один квант действия). Следовательно, в принципе, переход с одного уровня функционального состояния на другой всегда является дискретным (квантованным), а не гладким, и эта дискретность определяется «калибром» СФЕ.

Число стационарных состояний равно числу СФЕ системы. Системы с большим количеством «мелких» СФЕ будут проходить через динамические процессы более гладко и без сильных рывков, чем системы с небольшим количеством «крупных» СФЕ. Следовательно, динамический процесс характеризуется амплитудой прироста функций системы от минимума к максимуму (минимакс системы, зависит от абсолютного числа её СФЕ), дискретностью или шагом прироста функций (зависит от «калибра» или кванта единичных СФЕ) и параметрами цикличности функций (скоростью нарастания действий системы, периодом фаз цикла и т.д.). Он может быть целевым или паразитным. Следует отметить, что стационарное состояния также является процессом, но установившимся (стационарным) процессом. В таких случаях состояние систем от цикла к циклу не меняется. Но во время каждого цикла в системе происходит очень много различных динамических процессов, потому что система сама состоит из подсистем, в каждой из которых есть свои циклы и свои процессы.

Установившийся процесс сохраняет систему в одном и том же функциональном состоянии и на одном и том же стационарном уровне. По определению, данному выше, если система не меняет своего функционального состояния, то она находится в стационарном состоянии. Следовательно, установившийся процесс и стационарное состояние – это одно и то же, потому что независимо от того, находятся ли системы в стационарном состоянии или в динамическом процессе, в их подсистемах всегда могут быть какие-либо стационарные или динамические процессы. Например, даже просто рецепция рецептором «Х» является динамическим процессом. Отсюда – нет абсолютно инертных (бездеятельных) объектов, любой объект нашего Мира тем или иным образом как-то действует. Предполагается, что полностью «бездеятельным» объект может быть при нуле градусов Кельвина (абсолютный нуль).

Попытки получить абсолютно бездеятельные системы предпринимались путём замораживания тел до долей градусов Кельвина. Но заморозить тело до абсолютного нуля, видимо, не удастся, потому что тело будет всё равно двигаться в пространстве, пересекать какие-либо магнитные, гравитационные или электрические поля и взаимодействовать с ними. Поэтому, вероятно, на данный момент в принципе невозможно получить абсолютно инертное и бездеятельное тело. Целостный организм представляет собой мозаику систем, находящихся или в разных стационарных состояниях, или в динамических процессах. Можно было бы возразить, что в организме вообще нет систем в стационарном состоянии, поскольку в любых его системах постоянно происходят какие-либо динамические процессы.

Во время систолы давление в аорте возрастает, а во время диастолы падает, сердце постоянно работает, кровь непрерывно течёт по сосудам, и т.д. Всё это правильно, но оценка функций системы проводится не по текущему её состоянию, а по циклам её деятельности. Поскольку все процессы в любых системах циклические, в том числе и в организме, то критерием стационарности является неизменность интегрального состояния системы от цикла к циклу. Аорта реагирует на внешнее воздействие (на ударный выброс левого желудочка) тем, что по мере нарастания давления напряжение её стенок возрастает, и по мере его снижения – падает. Но если взять период времени больший, чем период одного кардиоцикла, то интегральное состояние аорты от кардиоцикла к кардиоциклу не меняется и является стационарным.

Оценка функционального состояния систем. Оценка может быть качественная и количественная. Наличие (отсутствие) каких-либо волн на кривой является качественной оценкой, а их амплитуда или частота – количественной. Для оценки функционального состояния любых систем необходимо сравнение результатов измерений параметров функций с тем, что должно быть у данной системы. Для того чтобы судить о наличии (отсутствии) патологии, только измерения какого-либо параметра недостаточно. Например, у кого-то мы измерили артериальное давление и получили значение 190/100 мм Hg. Много это, или мало? А сколько должно быть? Чтобы ответить на эти вопросы нужно сравнить полученный результат с нормативной шкалой, т.е., с должной величиной. Если полученное значение отличается от должного, значит есть патология, если не отличается – нет патологии. Если артериальное давление порядка 190/100 мм Hg наблюдается в покое, это патология, если на пике максимальной нагрузки, это норма.

Следовательно, должные величины зависят от состояния, в котором находится данная система. Для оценки параметров существуют нормативные шкалы должных величин. Существуют максимальные и минимальные должные величины, должные покоя и пика нагрузки, а также должные кривые функций. Минимальные и максимальные должные не всегда должны соответствовать состоянию покоя или пика нагрузки. Например, общее периферическое сосудистое сопротивление должно быть максимальным в покое и минимальным в нагрузке. Современная медицина широко использует эти виды должных величин, но почти незнакома с понятием должных кривых. Должная величина – это то, что можно наблюдать у большинства нормальных и здоровых лиц с учётом принадлежности субъекта к определённой нормативной группе похожих субъектов. Если все имеют такую-то величину и нормально существуют в данных условиях, то для того, чтобы данный субъект мог также нормально существовать в этих же условиях, у него должна быть такая же величина. Для этого используют статистические нормативные шкалы, полученные путём обширных детальных статистических исследований у определённых групп субъектов. Это так называемые статистические математические модели. Они показывают, какие параметры должны быть у данной группы субъектов.

Однако использование нормативных таблиц – это примитивный способ оценки функций систем. Во-первых, они дают должные величины, характеризующие только группу здоровых лиц, а не данного конкретного субъекта. Во-вторых, мы уже знаем, что системы каждый момент времени находятся в одном из своих функциональных состояний и это зависит от внешних воздействий. Например, в покое система находится на самом низком уровне функционального состояния, а на пике нагрузке – на самом высоком. Тогда о чём говорят эти таблицы? Вероятно о должных величинах в состоянии покоя систем организма или на пике их нагрузки. Но ведь проблемы больных, это не состояние их покоя, и уровень их ежедневной обычной (рутинной) нагрузки – это не их максимальная нагрузка. Для нормальной оценки функционального состояния организма больных необходимо использовать не табличные данные должных величин, а должные кривые функций систем организма, то, что сегодня почти не применяется. Совпадение или несовпадение актуальных кривых функций систем организма с должными кривыми будет мерилом их достаточности или недостаточности.

Следовательно, применение нормативных таблиц является недостаточным и не отвечает требованиям адекватной диагностики. Применение должных кривых является более информативным (см. ниже). Статистические математические модели не обладают такой точностью, как бы точно мы ни измеряли бы параметры. Они показывают, какие величины параметров должны быть у определённой группы субъектов, похожих по определённым признакам, например, мужчин в возрасте 20-30 лет, ростом 165-175 см, курящих или не курящих, женатых или неженатых, белых, желтых или черных и т.д. Статистические модели намного проще детерминированных, но и менее точные, поскольку по отношению к данному субъекту можем знать лишь с определённой долей вероятности, например, в 80%.

Статистические модели применяют в тех случаях, когда мы не знаем всех элементов системы и законов их взаимодействия. Тогда мы выискиваем похожие системы по значимым признакам, каким-то образом измеряем результаты действия всех этих систем, действующих в сходных условиях (клинические испытания), и вычисляем средний результат действия. Предположив, что данный субъект мало чем отличается от других, иначе он не был бы похож на них, мы говорим: – «Раз у них такие-то параметры данной системы в таких-то условиях и они живут без проблем, значит и у него должны быть такими же эти параметры, если он находится в этих же условиях». Однако условия проживания субъекта постоянно меняются. Изменение или неучёт даже одного значимого параметра может значительно изменить результаты статистических исследований, и это является большим недостатком статистических математических моделей. Кроме того, часто статистические модели вообще не раскрывают суть патологического процесса.

Функциональная остаточная ёмкость лёгких (ФОЕ) показывает объём лёгких в конце нормального выдоха и является определённым показателем числа функциональных единиц вентиляции ФЕВ. Следовательно, увеличение ФОЕ указывает на увеличение числа ФЕВ? Но у больных эмфиземой лёгких ФОЕ значительно увеличена. Что же, у них число ФЕВ увеличено? Абсурд, поскольку мы знаем, что при эмфиземе происходит разрушение ФЕВ! А у больных с недостаточностью насосной функции левого желудочка наблюдается уменьшение ФОЕ. Значит у них уменьшено число ФЕВ?

Без знания динамики функций аппарата внешнего дыхания и лёгочного кровообращения невозможно дать точного ответа на эти вопросы. Следовательно, основной недостаток статистических моделей заключается в том, что достаточно достоверные результаты исследований можно получить лишь в том случае, если строго соблюдать все значимые условия, которые определяют данную группу субъектов.

Изменение или добавление одного или нескольких значимых условий исследования, например, рост, пол, вес, цвет глаз, открытое окно во время сна, место жительства и т.д., может сильно изменить конечный результат, добавив новую группу субъектов. В результате, если мы хотим знать, например, жизненную ёмкость лёгких у жителей Нью-Йорка, мы обязаны проводить исследования именно у жителей Нью-Йорка, а не у жителей Москвы, Парижа или Пекина, и эти данные могут не подходить, например, для жителей Рио-де-Жанейро. Более того, нормативы у жителей разных районов Нью-Йорка могут быть различными, в зависимости от национальной принадлежности, загрязнённости внешней среды этих районов, социального уровня и пр. Конечно же, можно исследовать все мыслимые варианты групп субъектов, и выработать нормативы, например, для мужчин в возрасте от ... и до..., курящих или не курящих сигары (трубки, сигареты или папиросы) с высокой (низкой) концентрацией никотина, коренных жителей (эмигрантов), белых, чёрных или желтых и т.д. Это потребует гигантских усилий и всё равно не оправдает себя, поскольку мир постоянно меняется и эту работу каждый раз придётся повторять. Тем более невозможно выработать статистические нормативы для бесконечного числа групп субъектов во время динамических процессов, например, физических нагрузок, в разные фазы патологических процессов и т.д., когда число значений каждого отдельного параметра очень велико. Когда совершенно неизвестны детали системы, но известны варианты реакции системы и их весовые вероятностные коэффициенты, появляется статистическая математическая модель системы.

Неточность этих моделей носит принципиальный характер и обусловлена вероятностным характером функций. По мере изучения системы начинают проявляться детали её строения. В результате появляется эмпирическая модель в виде формулы. Эта модель более точная, чем статистическая, но она всё ещё носит вероятностный характер. Когда известны все детали системы и полностью раскрывается механизм её работы, появляется детерминированная математическая модель в виде формулы. Её точность обусловлена только точностью методов измерения. Применение статистических математических моделей оправдано на первых этапах любого познания, когда детали изучаемого явления неизвестны. На этом этапе познания вводится понятие «чёрного ящика», когда мы ничего не знаем о строении этого «ящика», но нам известна его реакция на некоторые воздействия. Типы его реакций выявляются с помощью статистических моделей и далее, с помощью логики, выявляются детали его систем и их взаимодействие. Когда всё это выявлено, наступает очередь детерминированных моделей, а оценку функций систем проводят не по табличным данным, а по должной кривой функции системы. Должная кривая функции системы – это должное множество значений функции данной конкретной системы у данного конкретного субъекта при изменении её нагрузки от минимума до максимума.

Сегодня должные кривые почти не используются и вместо должных кривых применяют экстремальные минимальные и максимальные должные величины. Например, должная вентиляция лёгких в покое и на пике нагрузки. Для этого проводят максимальную нагрузку в однотипных группах людей и измеряют вентиляцию лёгких в покое и на пике нагрузки. После статистической обработки появляются должные величины вентиляции лёгких для условий покоя и пика нагрузки. Недостаток экстремальных должных величин заключается в том, что этот метод малопригоден для больных. Не все больные могут нормально выполнить нагрузку и прерывают её задолго до достижения должного максимума. Больной мог, например, дать должную вентиляцию лёгких, но он просто прекратил нагрузку слишком рано. Как же оценивать функцию? Это можно сделать только с помощью должной кривой. Если актуальная кривая совпадает с должной кривой, функция нормальная на участке совпадения. Если актуальная кривая ниже должной кривой, она отстающая. Наклонная прямая из вертикальных отрезков прямой – должная кривая. Вертикальная пунктирная прямая – граница перехода нормальной или отстающей функции в недостаточную (в плато).

Недостаток должных кривых в том, что для их построения необходимо использовать детерминированные математические модели систем, которых пока есть очень мало. Они строятся на основе знания причинно-следственных связей между элементами системы. Эти модели наиболее сложные, трудоёмкие и во многих случаях пока невыполнимые. Поэтому в практической медицине они почти не применяются и это является причиной отсутствия аналитической медицины. Но они наиболее точные и показывают, какие параметры должны быть у данного конкретного субъекта в любой момент времени. Только использование должных кривых функций позволяет верно оценить актуальные кривые. Отличие детерминированных математических моделей от статистических таблиц заключается в том, что в первом случае вырабатываются должные величины для конкретно данного субъекта (персональные должные), а во втором – должные величины для группы похожих на данного субъекта лиц.

Возможность построения детерминированных моделей зависит только от меры нашего знания об исполнительных элементах системы и законов их взаимодействия. Примером статистической нормативной шкалы в механике может быть вычисление вероятности попадания очередного броска камня в заданную цель. После серии бросков, выполнив определённые статистические вычисления можно прогнозировать, что очередной бросок с такой-то степенью вероятности попадёт в цель. Если же для этого использовать детерминированную математическую модель (баллистику), то зная вес камня, силу и угол броска, вязкость воздуха, скорость и направление ветра и т.д., можно точно вычислить и предсказать место падения камня.

«Дайте мне точку опоры и я переверну земной шар», сказал Архимед, имея ввиду, что у него была детерминированная математическая модель механики движений. Живой организм – слишком сложная и многокомпонентная система. Учесть все параметры и их взаимосвязи невозможно, поэтому статистические математические модели не могут адекватно описать состояние систем организма. Но совместное использование статистических и детерминированных моделей позволяет с достаточной степенью точности оценивать параметры живых систем. Со временем, по мере накопления знаний, статистические модели сменяются детерминированными. Техника намного проще биологии и медицины, потому что объектом её познания являются относительно простые системы (машины), построенные человеком. Поэтому её развитие и процесс смены статистических математических моделей на детерминированные ушёл далеко вперёд, по сравнению с медициной. Тем не менее, на передовых позициях любых наук, в том числе и технических, там, где не всё ещё ясно и познано, статистика сохраняет свои позиции, поскольку она помогает выявлять элементы систем и законы их взаимодействия. Для чего мы проводим обследование субъекта и оценку функций систем его организма? Для того чтобы знать, насколько он отличается от ему подобных? Возможно. Но, вероятно, основная цель обследования больного – определить, может ли он нормально существовать без медицинской помощи, и если нет, то какую помощь ему оказать.

Патологический процесс – это процесс разрушения каких-либо СФЕ систем организма, в котором одну из ключевых ролей играет порочный круг. Однако порочные круги начинают срабатывать лишь при определённой степени нагрузки. Ниже этого уровня они не появляются и не разрушают СФЕ. Т.е., ниже определённого порога нагрузки (механической, тепловой, токсической и т.д.) нет патологического процесса, и нет болезни. Следовательно, определив порог начала появления порочного круга, мы сможем узнать верхний «потолок» качества жизни данного больного. Если условия его проживания (ритм жизни) позволяют ему не превышать этот «потолок», значит в этих условиях данный субъект не будет болеть. Если ритм жизни требует больше, чем могут дать возможности его организма, то он будет болеть. Чтобы не болеть он должен ограничить себя в некоторых своих действиях. Ограничить себя в своих действиях – это значит снизить уровень жизни, лишить себя возможности выполнять некоторые действия, которые могут делать другие, или которые он сам делал ранее, но которые сейчас недоступны данному больному в силу ограничения ресурсов его организма из-за дефектов. Если эти ограничения касаются только получения удовольствий, таких как, например, игра в футбол, это как-то можно перенести. Но если эти ограничения касаются условий жизни больного, то нужно каким-то образом это учесть.

Например, если его квартира расположена на первом этаже, то для вполне нормального образа жизни его максимум потребления О2 должен быть, например, 1000 мл в минуту. Но если он проживает, например, на третьем этаже, а в доме нет лифта и для подъёма на третий этаж пешком он должен уметь усваивать 2000 мл/мин О2, в то время как он может усваивать всего лишь 1000 мл/мин О2, то что же делать? У больного возникает проблема, которую можно решить лишь с помощью каких-либо лечебных мероприятий или сменив условия жизни. В клинической практике мы почти не оцениваем функциональное состояние больного с точки зрения его соответствия условиям проживания. Конечно это тривиально и мы догадываемся об этом, но пока ещё нет объективных критериев и соответствующей методологии оценки соответствия функциональных резервов организма больного условиям его жизнедеятельности. Эргономика невозможна без системного анализа.

Основным критерием достаточности функций организма для данных условий его проживания должно быть отсутствие возникновения порочных кругов (см. ниже) при данном уровне обычных жизненных нагрузок. Если в данных условиях возникают порочные круги, то нужно, либо каким-то образом усилить функции систем организма, либо данный больной обязан сменить условия проживания, чтобы порочные круги не срабатывали, либо он будет постоянно болеть со всеми вытекающими отсюда последствиями. Таким образом, мы нуждаемся не только в знании минимальных или максимальных должных величин, которые мы можем получить, используя статистические математические модели. Мы также нуждаемся в знании бытовых должных величин этих же параметров, которые должны быть у данного конкретного больного, чтобы условия его проживания не приводили бы к развитию патологических процессов и не разрушали бы его организм. А для этого нам нужны детерминированные математические модели.

 

Системы стабилизации и пропорциональные системы. Существует множество типов различных систем. Но для нас особое значение имеют системы стабилизации и пропорциональные системы. У первых результат действия всегда сохраняется один и тот же (стабильный), не зависит от силы внешнего воздействия, но зависит от приказа. Например, рН крови должен быть всегда равен 7.4, артериальное давление – 120/80 мм Hg, и т.д. (системы гомеостаза), независимо от внешних воздействий. У вторых результат действия зависит от силы внешнего воздействия по какому-либо определённому закону, задаваемому приказом, и пропорционален ему. Например, чем больше мы выполняем физической работы, тем больше мы должны потреблять О2 и выделять СО2. Система стабилизации использует два рецептора – «Х» и «Y». Рецептор «X» используется для запуска системы в зависимости от наличия внешнего воздействия, а рецептор «Y» – для измерения результата действия. На вход приказа блока управления системы стабилизации подается приказ – задание, какой величины должен быть результат действия.

Система стабилизации должна выполнять это задание, т.е., поддерживать (стабилизировать) результат действия на заданном уровне, независимо от силы внешнего воздействия. Стабильность результата действия обеспечивается тем, что в «базе данных» блока управления есть соотношения числа активных СФЕ и силы внешнего воздействия и осуществляется по логике ООС – если результат действия увеличился, то нужно уменьшить его, если уменьшился, то увеличить его. Для этого блок управления должен содержать ППС и ООС. Следовательно, простейший блок управления (ППС) для систем стабилизации не подходит. Нужен как минимум простой блок управления, который содержит также и ООС. У системы стабилизации до вертикальной пунктирной прямой результат действия системы стабильный (нормальная функция, кривая идёт горизонтально). После пунктирной прямой функция падает (возрастает), - стабилизация нарушилась (недостаточность функции). У пропорциональной системы до вертикальной пунктирной прямой её функция нарастает (падает) пропорционально внешнему воздействию (нормальная функция). После пунктирной прямой функция не меняется (вошла в насыщение, перешла в плато - недостаточная функция).

В системе стабилизации измерительный элемент постоянно измеряет результат действия системы и передаёт его в блок управления, который сравнивает его с заданным. В случае расхождения результата действия с заданием этот блок принимает решение о тех или иных действиях и заставляет элементы исполнения действовать таким образом, чтобы это расхождение исчезло. Внешнее воздействие может меняться в различных пределах, но результат действия должен оставаться стабильным и быть равным заданному. На это система затрачивает свои ресурсы. Если ресурсы заканчиваются, система стабилизации перестаёт стабилизировать результат действия и с этого момента начинается её недостаточность. Примером стабилизации, например, является скорость вращения звезды в вакууме. Если радиус звезды уменьшится, то скорость её вращения увеличится и усилятся центробежные силы, которые увеличат её радиус и скорость вращения уменьшиться. Если радиус звезды увеличится, то всё произойдёт в обратном порядке. На этом же принципе фигурист на льду регулирует скорость вращения своих пируэтов. Пропорциональная система также должна использовать оба рецептора «Х» и «Y». Один из них измеряет входное воздействие, а другой – результат действия системы. На вход блока управления подается приказ – задание, какой должна быть пропорция между внешним воздействием и результатом действия. Поэтому такие системы называются пропорциональными. Внешнее воздействие может меняться в различных пределах. Но блок управления должен подстраивать работу элементов исполнения таким образом, чтобы сохранялась та пропорция между внешним воздействием и результатом действия, которая была «предписана» (задана) в установке. Примерами пропорциональных систем являются, например, усилители электрических сигналов, механические рычаги, морские течения (чем больше прогрев воды в океане, тем сильнее Гольфстрим), атмосферные явления и т.д. Таким образом, примеры систем стабилизации и пропорциональных системы можно найти в любом мире, и не только в биологических системах.

Активные и пассивные системы. Пассивными системами называются те системы, которые не затрачивают энергии на свои действия. Активными системами называются те системы, которые затрачивают энергию на свои действия. Однако, как уже не раз подчёркивалось, любое действие любых систем требует затрат энергии. Ни одно действие, даже самое ничтожное, невозможно без затрат энергии, потому что, как уже было сказано, действие – это всегда взаимодействие между системами или её элементами. А любое взаимодействие – это связь между системами или её элементами, которая для своего создания требует вложения в неё энергии. Поэтому любое действие требует затрат энергии. Следовательно, любые системы потребляют энергию, в том числе и пассивные. Различие между активными и пассивными системами только в источнике энергии. Каким же образом действует пассивная система?

Если система находится в равновесном состоянии с окружающей средой и на неё не оказывается никакого воздействия, то система не должна делать никаких действий. А раз она не совершает действий, она не потребляет энергию. Она пассивна до того момента, когда она начнёт действовать и лишь тогда начнёт потреблять энергию. Равновесие карандаша обусловлено сбалансированным толканием (давлением) пружин на карандаш. Пружинки являются не просто случайными группами элементов (набором атомов и молекул), а пассивными системами с петлями ООС и исполнительными элементами на молекулярном уровне (межмолекулярными силами в стальных пружинках), которые стремятся сбалансировать силы межмолекулярных связей, что проявляется в виде силы напряжения пружин. Поскольку в случае отсутствия внешнего воздействия нет действий самой системы, то нет и энергозатрат, система пассивно ждёт появления внешнего воздействия.

У обоих типов систем одна и та же цель – удерживать карандаш в вертикальном положении. В пассивных системах эта функция выполняется пружинами (пассивными СФЕ, А и В) и столбами воздуха, заключёнными в резиновые баллончики (пассивные СФЕ, D). СФЕ запасают (используют) энергию во время внешнего воздействия (толкание пальцем карандаша сдавливает пружинки). В активной системе (С) эта же функция достигается за счёт струй воздуха, которые постоянно разрушаются. Эти струи создают моторные вентиляторы (активные СФЕ), которые затрачивают энергию, ранее запасённую, например, в аккумуляторах. Если заключить воздух этих струй в резиновые баллоны, то они уже не разрушатся и будут существовать независимо от вентиляторов, выполняя ту же функцию. Но это уже пассивная система (D). Но вот внешнее воздействие появилось, и карандаш отклонился в сторону. Пружины тут же стремятся вернуть карандаш в прежнее положение, т.е., система начинает действовать. Откуда она берёт энергию для своих действий? Эту энергию принесло внешнее воздействие в виде кинетической энергии толкания пальцем, которое сжало (растянуло) пружинки и они запасли эту энергию в виде потенциальной энергии сжатия (растяжения).

Как только внешнее воздействие (толкание пальцем) прекратилось, потенциальная энергия сжатых пружин превращается в кинетическую энергию их распрямления и это возвращает карандаш обратно в вертикальное сбалансированное положение. Внешнее воздействие повышает внутреннюю энергию системы, которая затем используется для деятельности системы. Есть воздействие – есть избыток внутренней энергии системы, есть ответное действие системы. Нет воздействия – нет избытка внутренней энергии системы, нет её действия. Внешнее воздействие приносит энергию в систему, которая использует её для реакции на это воздействие. Функции пружин могут выполнять струи воздуха, создаваемых вентиляторами, расположенными на карандаше. На «постройку» струй воздуха затрачивается избыток энергии системы «вентиляторы - карандаш», также привнесённой извне, но сохраняемой до нужного времени (например, бензин в баке или электричество в аккумуляторе). Такая система уже будет активной, потому что использует свою внутреннюю энергию, а не энергию внешнего воздействия. Отличие струй воздуха от пружин состоит в том, что струи воздуха состоят из случайных групп молекул воздуха (не системы), движущихся в одном направлении. Среди этих элементов есть элементы исполнения (СФЕ – молекулы воздуха), но нет блока управления, который мог бы построить систему из них наподобие пружин, т.е., обеспечить существование струй воздуха как стабильных отдельных и независимых тел (систем). Эти струи воздуха постоянно строятся пропеллерами вентиляторов и, поскольку у них нет собственного блока управления, постоянно сами собой разрушаются.

Если построить какую-либо систему, которая позволит струям воздуха не разрушаться, например, заключить их в резиновые баллоны, то они смогут существовать уже независимо от вентиляторов. Но в этом случае система стабилизации вертикального положения карандаша перейдёт из категории активных в пассивную. Следовательно, как активные, так и пассивные системы потребляют энергию. Однако пассивные потребляют внешнюю энергию, привносимую самим внешним воздействием, а активные – свою собственную внутреннюю энергию. Могут возразить, что внутренняя энергия, скажем, миоцита всё равно является внешней, привнесённой в клетку извне, например, в виде глюкозы. Это правда, и более того, любой объект содержит внутреннюю энергию, которая когда-либо была внешней.

И, возможно, мы даже знаем источник этой энергии – это энергия Большого Взрыва. На создание любого атома когда-то и где-то была затрачена определённая энергия, которую тем или иным путём можно извлечь из него. Такая внедрённая внутренняя энергия есть у любого объекта нашего Мира и невозможно найти никакой другой объект в нём, который бы содержал абсолютно свою собственную внутреннюю энергию, которую ничто и никогда не внедряло в него. Всегда при взаимодействии систем происходит обмен энергией. Но во время своей деятельности пассивные системы не тратят свою внутреннюю энергию, потому что не «умеют» этого делать, а используют только энергию внешнего воздействия. А активные системы могут тратить свою внутреннюю энергию. Пассивной системой является грудная клетка, которая осуществляет пассивный выдох, и многие другие системы живого организма.

Эволюция систем. Сложный блок управления. Для наилучшего достижения цели система всегда должна выполнять свое действие оптимально, выдать свой результат действия в нужном месте и в нужное время. Блок управления системы решает обе задачи – где и когда нужно срабатывать. Для срабатывания в нужном месте у него должно быть понятие о пространстве и соответствующие сенсоры, поставляющие информацию о ситуации в данном пространстве. Время выдачи результата действия у простых систем, в свою очередь, включает в себя два периода: время, затраченное на принятие решения (от момента появления внешнего воздействия до момента активации СФЕ) и время, затраченное на срабатывание СФЕ (от момента начала активации СФЕ до момента получения результата действия). Время, затраченное на принятие решения, зависит от длительности циклов работы системы, и это было рассмотрено выше. Время, затраченное на срабатывание СФЕ, зависит от свойств самих СФЕ, таких как, например, скорость биохимических реакций в живых клетках, или скорость сокращения саркомера в мышечных клетках, что в немалой степени зависит от скорости расхода энергии этими СФЕ, и от скорости восстановления энергетического потенциала после срабатывания этих СФЕ. Эти скорости в основном являются характеристиками, присущими самим СФЕ, но также определяются сервисными системами, которые обслуживают эти СФЕ. Они также могут управляться блоком управления. Метаболическая, гормональная, простогландиновая и вегетативная нервная регуляция в живом организма призвана как раз для этой цели – в какой-то степени менять скорости биохимических реакций в клетках тканей и условия доставки энергоносителей путём регуляции (сервисных) систем дыхания и кровообращения. Но понятие «в нужное время» означает не только время срабатывания в ответ на внешнее воздействие.

Во многих случаях необходимо срабатывать раньше внешнего воздействия. Однако система с простым блоком управления начинает срабатывать лишь после появления внешнего воздействия. Для живых систем это очень большой (катастрофический) недостаток, поскольку если уже есть воздействие на какой-либо организм, то, возможно, его уже начали кушать. Будет лучше, если система начнёт действовать ещё до того, как это внешнее воздействие начнётся. Если внешняя ситуация угрожает появлением опасного воздействия, то оптимальные действия системы могут предохранить её от него. А для этого нужно знать состояние внешней ситуации, уметь её увидеть, оценить и знать, какие действия необходимо сделать в определённых случаях. Т.е., нужно осуществлять управление по упреждению получения реального результата действия перед внешним воздействием. Для выполнения этих действий он должен содержать специальные элементы, которые могут это делать и которых у него нет.

Простой блок управления может осуществлять управление только по рассогласованию (расхождению) реального результата действия с заданным, потому что система с простым блоком управления не может «знать» ничего о внешней ситуации до того момента, пока эта ситуация не начнёт воздействовать на систему. Знание внешней ситуации для простого блока управления недоступно. Поэтому простой блок управления всегда начинает срабатывать с запаздыванием. Иногда может быть слишком поздно управлять. Если не знать внешней ситуации, то система (живой организм) не сможет сделать прогноз ситуации и не сможет поймать жертву или предупредить встречу с хищником. Таким образом, простой блок управления не может принимать решения о времени и месте срабатывания. Для этого блоку управления нужен специальный анализатор, который может определять и анализировать внешнюю ситуацию и, в зависимости от различных внешних или внутренних условий, может вырабатывать решение о своих действиях. У этого анализатора должно быть понятие о времени и пространстве, в котором разыгрывается определённая ситуация, а также соответствующие информаторы (сенсоры с линиями связи между ними и этим специальным анализатором), которые дают информацию о внешней ситуации. У анализатора-информатора ничего этого нет.

Когда охотник стреляет в летящую утку, он стреляет не прямо в неё, а стреляет с упреждением, потому что знает, что пока пуля долетит до утки, она (утка) за это время переместится вперёд. Как система для поражения утки, он должен видеть всю ситуацию на расстоянии, он должен правильно оценить её, сделать прогноз, имеет ли смысл стрелять, и только на основе такого анализа он должен действовать, т.е., стрелять в утку. Он не может ожидать, пока утка коснётся его (чтобы сработал его информатор «Х») и тогда он мог бы в неё выстрелить. Для этого он должен сначала выделить утку как нужный объект на фоне других ненужных объектов, затем измерить расстояние до утки, пускай даже и «на глаз». Он делает это с помощью своего специального анализатора (зрительного), который не является сенсором «Х» или «У», а является дополнительным сенсором «С» (дополнительные специальные дистанционные рецепторы с афферентными путями). Такими рецепторами могут быть любые рецепторы, которые могут получать информацию на расстоянии – хемо-, тепло-, фоторецепторы и т.д. Зрительный анализатор охотника включает в себя фоточувствительные палочки и колбочки в глазу (фоторецепторы), зрительные нервы и различные мозговые структуры. Он должен распознать все окружающие предметы, классифицировать их и на их фоне выделить и определить местоположение утки (оценка ситуации). Кроме того с помощью реципрокной иннервации он должен так расположить своё тело, чтобы ружьё было направлено точно в то место впереди утки (упреждение), чтобы выполнить свою цель – попасть в утку. Всё это он делает с помощью своего дополнительного анализатора, который является анализатором-классификатором. Простой блок управления систем с ООС, такого дополнительного анализатора-классификатора не содержит. Потому он и называется простым.

У него есть только анализатор-информатор, который чувствует с помощью сенсора «Х» внешнее воздействие только тогда, когда это воздействие уже началось, измеряет свой результат действия с помощью ООС (сенсора «У») лишь тогда, когда этот результат уже появился, и анализирует получаемую информацию уже после того, как был выдан результат действия, потому что для срабатывания ООС требуется время. Кроме того, анализатор-информатор содержит только «базу данных», в которой в явной или неявной форме «записана» таблица должных значений контролируемых параметров (данные), которые нужно сравнивать с данными измерений внешнего воздействия и результатов действия. На основе этих сравнений он вырабатывает решения. Его алгоритм управления основан только на сравнении данных измерений, проводимых рецепторами «Х» и «У», с «базой данных». Если, рассогласование равно «М», то нужно сделать, например, меньше действия, если он равен «N», то больше действия. Простой блок управления не может менять решения об изменении уровня контролируемого параметра, времени включения или глубины ООС, потому что у него нет соответствующей информации. Для выполнения этих действий он должен содержать специальные элементы, которые могут дать ему эту информацию. Что же ему нужно для этого?

Чтобы принять решение, данный блок должен «знать» ситуацию вокруг системы, которая может причинить определённое внешнее воздействие. Для этого, прежде всего он должен «видеть» её, т.е., иметь для этого сенсоры, которые могут получать информацию на расстоянии и без прямого контакта (дистанционный информатор «С»). Кроме того он должен содержать специальный анализатор-классификатор, который может классифицировать внешнее окружение и выделять в нём не все объекты и ситуации, а лишь те, которые могут повлиять на выполнение его целей. Кроме того, в нём должны быть понятия о пространстве и времени. Игра рыбьих косяков и даже дельфиньих стай в окрестностях плывущего боевого корабля не может повлиять на его движение в целевое место назначения. Но «игра» вражеской подводной лодки в его окрестностях может очень существенно повлиять на выполнение его цели. Боевой корабль должен уметь видеть всё его окружение, выделить из всех возможных ситуаций, которые могут быть, исходя из внешней ситуации, только те, которые могут создать такие внешние воздействия на него, которые могут помешать выполнению его цели.

А для этого он должен «знать» возможные варианты ситуаций, которые могут повлиять на выполнение цели данной системы. Для этого он должен иметь «базу знаний», в которой содержится описание всех тех ситуаций, которые могут оказать влияние на выполнение цели. Если в его «базе знаний» нет описания определённых объектов или ситуаций, то он не сможет распознать (классифицировать) объект или ситуацию и не сможет принять верное решение. В «базе знаний» должна сохраняться информация не о параметрах внешнего воздействия, которые хранятся в «базе данных», а о ситуациях вокруг (вне) системы, которые могут привести к специфическому внешнему воздействию. «База знаний» может быть внедрена в блок управления в момент его «рождения» или внесена позже вместе с приказом, причём внедряется в данный блок внешними системами по отношению к данной системе. Если в его «базе знаний» нет описания данной ситуации, он не сможет её распознать и классифицировать. «База знаний» содержит описание различных ситуаций и значимость этих ситуаций для системы. Зная значимость реальной ситуации для достижения цели, система сможет сделать прогноз и принять решение о своих действиях в зависимости от прогноза.

Кроме «базы знаний» у него также должна быть и «база решений» – набор готовых решений, принимаемых блоком управления в зависимости от ситуации и от прогноза, (уставные решения, инструкции), в которой хранятся соответствующие решениях, которые необходимо принимать в соответствующих ситуациях. Если у него нет готовых решений на внешнюю ситуацию, он не может выполнить свою цель. Определив ситуацию и выработав решение, он задаёт приказ для анализатора-информатора, который активирует стимулятор соответствующим образом. Таким образом, блок управления усложняется за счёт включения в его состав информатора «С» и анализатора-классификатора, содержащего «базу знаний» и «базу решений». Потому такие блоки управления называются сложными. Чем сложнее блок принятия решений, тем точнее может быть выбрано решение.

Следовательно, сложный блок управления включает в себя и анализатор-информатор, который имеет «базу данных», и анализатор-классификатор, который имеет «базу знаний» и «базу решений». Не любая живая клетка обладает анализатором - классификатором. В классификации живого мира есть две крупнейшие группы – мир растений и мир животных. Растения, как и многие другие субъекты живого мира, такие как кораллы и бактерии, не обладают дистанционными сенсорами, хотя, в некоторых случаях, может создаться впечатление, что всё же у растений такие сенсоры есть. Например, подсолнечник поворачивает свои головки в сторону солнца, как будто бы у него есть фототаксис. Но он поворачивает головку фактически не в сторону света, а в ту сторону, где больше нагревается его тело, а тепло идёт со стороны света. Тепло ощущается локально самим телом подсолнечника. Специальных инфракрасных сенсоров у него нет. Процесс же фотосинтеза не является процессом фототаксиса. Поэтому растения являются системами с простым блоком управления. И хотя есть очень сложно устроенные растения, способные даже питаться субъектами животного мира, всё равно их блок управления является простым, реагирующим только на прямой контакт.

Например, росянка питается насекомыми, она может заманить их к себе, приклеить к своему наружному желудку и даже сократить его створки. Она хищник и в этом она похожа на волка, акулу или медузу. Она может сделать много действий, подобно животному, но всё это она может делать только лишь после того, как насекомое сядет на неё. Росянка не может гоняться за своими жертвами, потому что она их не видит (нет дистанционных сенсоров). Что бы ни село на неё, даже если это будет маленький камешек, она проделает все необходимые действия и попытается переварить его, потому что у неё нет анализатора-классификатора. Поэтому росянка растение, а не животное. Клетки животных, включая одноклеточных, типа амёбы или инфузории, являются уже системами со сложными блоками управления, потому что обладают как минимум одним из пространственных анализаторов – хемотаксисом. Наличием дистанционных сенсоров животная клетка отличается от любых объектов растительного мира, у которых таких сенсоров нет. Поэтому блок управления является определителем, к какому миру принадлежит данный живой объект.

Медуза не является водорослью, а является животным, потому что у неё есть хемотаксис. Дистанционный анализатор даёт представление о пространстве, в котором нужно передвигаться. Поэтому растения стоят на месте, а животные двигаются в пространстве. Простой блок управления, включающий в себя только анализатор-информатор, является определителем мира минералов и растений. В чём различие между минеральным и растительным мирами, мы увидим ниже. Сложный блок управления, включающий в себя анализатор-классификатор, является уже определителем мира животных. Амёба является таким же охотником, как волк, акула или человек. Она питается инфузориями. Чтобы поймать инфузорию, она должна знать, где та находится и должна уметь двигаться. Она не может видеть свою жертву на расстоянии, но она может её почувствовать химическими органами чувств и стремиться к ней для захвата, у неё есть хемотаксис, вероятно первый из дистанционных сенсорных механизмов. Но кроме хемотаксиса у амёбы также должно быть понятие о пространстве, пусть даже и примитивное, в котором она существует и в котором она должна координировано и целенаправленно двигаться, чтобы поймать инфузорию. Кроме того, она должна уметь выделить инфузорию от других объектов, которые могут её встретиться на пути. Её анализатор-классификатор намного проще, чем, например, у волка, или акулы, потому что у неё нет зрения и слуха и вообще нервных структур, но он может классифицировать внешнюю ситуацию. У неё есть уже сложный блок управления, включающий в себя информатор «С», поэтому амёба не растение, а животное. Как блоки управления могут быть любой степени сложности, так и рефлексы могут быть любой степени сложности – от простейших аксон-рефлексов, до рефлексов, включающих в себя работу коры головного мозга (инстинкты и условные рефлексы).

Число рефлексов живого организма огромно, для каждой системы организма существуют собственные рефлексы. Более того, организм не только сложный сам по себе, но в силу своей сложности он имеет возможность строить дополнительные, временные системы, необходимые на данный момент для какого-либо специфического конкретного случая. Например, система плача является временной системой, которую организм строит на короткий промежуток времени. Блок управления системы плача является примером сложного блока управления. Цель плача – продемонстрировать свои страдания и вызвать жалость к себе. Эта система включает в себя в качестве составных исполнительных элементов другие системы (подсистемы), достаточно удалённые друг от друга, как в пространстве, так и в функциональном отношении (слёзные железы, дыхательные мышцы, альвеолы и бронхи лёгких, голосовые связки, мимические мышцы и т.д.). Сначала определяется внешняя ситуация и в случае необходимости по определённой программе начинает срабатывать рефлекс плача (сложный рефлекс, инстинкт), который включает в себя управление подачей голоса определённого тембра (управление дыхательными мышцами и голосовых связок), всхлипывания (серия прерывистых вздохов), слёзовыделением, определённой мимикой и т.д. Все эти удалённые элементы объединяются сложным блоком управления в единую систему, в систему плача, с очень конкретной и специфической целью продемонстрировать свои страдания другой системе.

Рефлекс плача может быть реализован на всех уровнях нервной системы, начиная от высших центральных мозговых структур, включая вегетативную нервную систему, подкорку и вплоть до коры головного мозга. Но мы рассматриваем только детский плач, который реализован в нервных структурах не выше подкорки (инстинктивный плач). После того, как цель была достигнута (страдания были однозначно продемонстрированы, а была ли вызвана жалость, это выяснится потом) рефлекс прекращается, данный сложный блок управления исчезает, и система распадается на свои составные части, которые продолжают функционировать уже в составе других систем организма. Система же плача исчезает (рассыпается). Откуда блок управления (на уровне подкорки) знает, что сейчас нужно плакать, а в другой момент не нужно? Для этого он распознаёт ситуацию (выделяет её и классифицирует). Этим занимается анализатор-классификатор. Его «база знаний» заложена в подкорку с рождения (инстинкты). Такие действия простой блок управления выполнить не может.

Все действия систем, управляемых простейшими и простыми блоками управления, будут автоматическими. Биологическим аналогом простейшего блока управления являются аксон-рефлексы, работающие по закону «всё или ничего». Простого – безусловные рефлексы, когда в ответ на определённое внешнее воздействие будет определённая автоматическая, но градуированная реакция. Простой блок управления будет лучше адаптировать действия системы, чем простейший, потому что он учитывает не только само внешнее воздействие, но и результат действия системы, который появился в ответ на это внешнее воздействие. Но он не может распознавать ситуации. Такие действия может выполнить сложный блок управления. Он реагирует не на внешнее воздействие, а на определённую внешнюю ситуацию, которая может дать определённое внешнее воздействие. Биологическим аналогом сложного блока управления являются сложные рефлексы, или инстинкты. Во время внутриутробного развития в мозг плода «внедряются знания» («база знаний») о возможных ситуациях. Объём этих знаний огромный.

Цыплёнок сразу может бегать, едва он вылупится из яйца. Крокодил, акула или змея сразу после рождения становятся хищниками, т.е., знают и умеют делать всё, что требуется для этого. Это говорит о том, что у них есть достаточная для этого врождённая «база знаний» и «база решений». В этих случаях мы говорим, что у животного есть инстинкты. Таким образом, система со сложным блоком управления является объектом, который может реагировать на определённую внешнюю ситуацию, в которой может быть это воздействие. Но он может реагировать только на фиксированное (конечное) число внешних ситуаций, описание которых содержится в его «базе знаний» и у него есть конечное число решений на эти ситуации, описание которых содержится в его «базе решений». Для определения внешней ситуации он имеет информатор «С» и анализатор-классификатор. В остальном он похож на систему с простым блоком управления. Он также может реагировать на определённое внешнее воздействие, и его реакция обусловлена типом и числом его СФЕ.

Результат действия системы также градуированный. Число градаций определяется числом исполнительных СФЕ в системе. Он также имеет анализатор-информатор с «базой данных», ППС (информатор «Х») и ООС (информатор «У»), которые через стимулятор (эфферентные пути) управляют системой. В неживом мире аналогов систем со сложным блоком управления нет. Биологическим аналогом систем со сложным блоком управления являются все животные, от отдельных клеток до животных с достаточно развитой нервной системой, включающей головной мозг и дистанционные органы чувств, такие как зрение, слух, обоняние, но у которых невозможно выработать рефлексы на новые ситуации, например, насекомые. Аналогом информатора «С» являются все «дистанционные» рецепторы – зрение (или их светочувствительные аналоги у менее развитых животных), слух и обоняние. Аналогом анализатора-классификатора являются, например, зрительный, слуховой, вкусовой и обонятельный анализаторы, расположенные в подкорке. Зрительный, слуховой, вкусовой и обонятельный анализаторы, расположенные в коре головного мозга, относятся уже к анализаторам-корреляторам.